In the verge of coronavirus pandemic, we are providing FREE access to our entire Online Curriculum to ensure Learning Doesn't STOP!

Conditions On Roots Of Quadratics

Go back to  'Quadratic Equations'

Let  \(f\left( x \right) = a{x^2} + bx + c\)  and  \(\alpha ,\beta \) be its roots. In this section, we deal with the problem of placing constraints on \(a, b, c\) given some constraint(s) on  \(\alpha \,{\rm{and}}\,\beta \) .

In section-1, we saw the constraint  \(D \ge 0\)  given that  \(\alpha ,\beta \)  are real. Similarly,  \(D < 0\)  if \(\alpha ,\beta \) are non-real. This is what we mean by saying that the nature of  \(\alpha ,\beta \)  places a constraint on \(a, b, c:\)

\[\begin{align}&\alpha ,\beta \,{\text{real}} \qquad  \quad\;\; \Rightarrow  \quad {b^2} - 4ac \geqslant 0  \\  &\alpha,\beta \,{\text{non - real}} \quad  \Rightarrow  \quad {b^2} - 4ac < 0  \\ \end{align}\]

Now we will deal with more specific constraints:

(A) \(\fbox{Both roots are of the same sign}\)

Since the roots are real, \(D \ge 0.\) Since they are of the same sign, \(\alpha \beta  > 0.\)

The graphs below illustrate examples for \({\text{a}}\,\, > \,\,0\)

Hence, the constraints are:

\(\fbox{\(\begin{align}&{b^2} - 4ac \ge 0\\\,\,\,\,\,\,\,\,\,&\qquad\;\;\frac{c}{a} > 0\end{align}\)}\)

(B)    \(\fbox{Roots are of opposite sign}\)

 For real roots, \(D \ge 0.\)  For roots of opposite sign, \(\alpha \beta  < 0.\) However, notice that \(\alpha \beta  < 0\) ensures that  \(D > 0\)  and hence writing the first constraint is unnecessary (Why?).Therefore all we require is  \(\alpha \beta  < 0.\)

The graphs below illustrate this case.

The required constraint is:

\(\boxed{\frac{c}{a}< 0}\)

(C)  \(\fbox{\({\rm{Both}}\,{\rm{roots}}\,{\rm{are}}\,{\rm{positive}}\)}\)

If you have followed the previous two cases properly, this case should be straight forward. We first of all require \(D \ge 0.\)  Since both the roots are positive, \(\alpha \beta  > 0\,{\rm{and}}\,\alpha  + \beta  > 0.\)

\(\fbox{\(\begin{align}&{b^2}\,\, - 4ac \ge \,0\\&\,\,\,\,\,\,\,\frac{{ - b}}{a} > \,0\\&\,\,\,\,\,\,\,\,\,\frac{c}{a} > \,0\end{align}\)}\)

(D) \(\fbox{\({\rm{Both}}\,{\rm{roots}}\,{\rm{are}}\,{\rm{negative}}\)}\)

This is similar to the previous case:

\(\fbox{\(\begin{align}{{b}^{2}}\,\,-4ac\ge \,0 \\ \,\,\,\,\,\,\,\frac{-b}{a}<\,0 \\ \,\,\,\,\,\,\,\,\,\frac{c}{a}>\,0 \\ \end{align}\)}\)

(E)   \(\fbox{\({\rm{Roots}}\,{\rm{lie}}\,{\rm{on}}\,{\rm{either}}\,{\rm{side}}\,{\rm{of}}\,k\)}\)

 This means that  \(\alpha  < k,\,\,\beta  > k\)

We see that if \(a > 0,\,f\left( k \right) < 0\) and if  \(a < 0,f\left( k \right) > 0\) or to put concisely,  \(af\left( k \right) < 0.\)  This represents a necessary and also sufficient constraint for our requirement (verify that this condition alone is sufficient):

\(\fbox{\(af\left( k \right) < 0\)}\)

(F)    \(\fbox{\({\rm{Both}}\,{\rm{the}}\,{\rm{roots}}\,{\rm{are}}\,{\rm{less}}\,{\rm{than}}\,k\)}\)

We see that for the left hand graph  \(\left( {a > 0} \right),f\left( k \right) > 0\)  and for the right hand graph  \(\left( {a < 0} \right),f\left( k \right) < 0.\)  We can say this concisely as  \(af\left( k \right) > 0.\) We also require \(D \ge 0\)  and since both the roots are less than k, \(\alpha  + \beta  < 2k\)

Hence, the constraints are:

\(\fbox{\(\begin{align}&D \ge 0\\&af\left( k \right) > 0\\ &- \frac{b}{a} < 2k\end{align}\)}\)

(G)   \(\fbox{\({\rm{Both}}\,{\rm{the}}\,{\rm{roots}}\,{\rm{are}}\,{\rm{greater}}\,{\rm{than}}\,k\)}\)

Here again, we see that  \(af\left( k \right) > 0.\)  Also, \(\alpha  + \beta  > 2k\)

\(\fbox{\(\begin{align}&D \ge 0\\&af\left( k \right) > 0\\ &- \frac{b}{a} > 2k\end{align}\)}\)

(H) \(\fbox{\({\rm{Both}}\,{\rm{the}}\,{\rm{roots}}\,{\rm{lie}}\,{\rm{between}}\,{k_1}\,{\rm{and}}\,{k_2}\)}\)

First of all, \(D \ge 0\)  for real roots. Now, notice that the x-coordinate of the vertex of the parabola lies between \({k_1}\,\,and\,\,{k_2}\). Also, whether a is positive or negative, notice that \(af({k_1}){\rm{ }}\,\,and \,\,af({k_2})\) are  positive.

The constraints are:

\(\fbox{\(\begin{align}&D \ge 0\\&af\left( {{k_1}} \right) > 0\\&af\left( {{k_2}} \right) > 0\\&{k_1} <  - \frac{b}{{2a}} < {k_2}\end{align}\)}\)

(I)  \(\fbox{\({\rm{Exactly}}\,{\rm{one}}\,{\rm{root}}\,{\rm{lies}}\,{\rm{between}}\,{k_1}\,{\rm{and}}\,{k_2}\)}\)

In all the four possible cases, \(f\left( {{k_1}} \right){\rm{and}}\,f\left( {{k_2}} \right)\) are of opposite sign. We can write this as \(f\left( {{k_1}} \right)f\left( {{k_2}} \right) < 0\)  . Try to see that once we write this constraint, the basic constraint  \(D \ge 0\)  becomes redundant (Why? Because  \(f (k_1)\)  and \(f (k_2)\) can be of opposite sign only if the graph crosses the axis; this means that writing  \(f\left( {{k_1}} \right) \cdot f\left( {{k_2}} \right) < 0\)  automatically implies that  \(f\left( x \right)\)  will have real roots).

The required constraint is.

\(\fbox{\(f\left( {{k_1}} \right) \cdot f\left( {{k_2}} \right) < 0\)}\)

(J)  \(\fbox{\({k_1}\,{\rm{and}}\,{k_2}\,{\rm{lie}}\,{\rm{between}}\,{\rm{the}}\,{\rm{roots}}\)}\)

Here, we see that for both cases \(af\left( {{k_1}} \right){\rm{and}}\,af\left( {{k_2}} \right)\)  will be negative. Notice again that this represents a sufficient condition.

\(\fbox{\(\begin{align}&af\left( {{k_1}} \right) < 0\\&af\left( {{k_2}} \right) < 0\end{align}\)}\)

Learn from the best math teachers and top your exams

  • Live one on one classroom and doubt clearing
  • Practice worksheets in and after class for conceptual clarity
  • Personalized curriculum to keep up with school