In the verge of coronavirus pandemic, we are providing FREE access to our entire Online Curriculum to ensure Learning Doesn't STOP!

Examples On Addition And Subtraction Of Vectors

Go back to  'Vectors and 3-D Geometry'

Example – 1

From any two vectors \(\vec a\,\,{\rm{and}}\,\,\vec b\) , prove that

(i) \(\left| {\,\vec a + \vec b\,} \right| \le \left| {\,\vec a\,} \right| + \left| {\,\vec b\,} \right|\)

(ii) \(\left| {\,\vec a - \vec b\,} \right| \le \left| {\,\vec a\,} \right| + \left| {\,\vec b\,} \right|\)

(iii) \(\left| {\,\vec a + \vec b\,} \right| \ge \left| {\left| {\,\vec a\,} \right| - \left| {\,\vec b\,} \right|} \right|\)

When does the equality hold in these cases?

Solution: Consider this figure:

The first two relations follow from the fact that in any triangle, the sum of two sides is greater than the third side:

In \(\Delta \) ABC:                   \(AC \le AB + BC\)(we’ll soon talk about how and when the equality comes)

                  \( \Rightarrow \qquad  \quad \left| {\vec a + \vec b} \right| \le \left| {\vec a} \right| + \left| {\vec b} \right|\)

In \(\Delta \) ABC ':                \(AC' \le AB + BC' = AB + BC\)

                 \( \Rightarrow \qquad \quad \left| {\vec a - \vec b} \right| \le \left| {\vec a} \right| + \left| {\vec b} \right|\)

In the first relation, the equality can hold only if the two vectors have the same direction; this should be intuitively obvious:

The equality in the second relation holds if the two vectors are exactly opposite:

To prove the third relation, we use in \(\Delta \)ABC in Fig - 11, the geometrical fact that the difference of any two sides of a triangle is less than its third side:

\[\qquad\left| {AB - BC} \right| \le AC\]

\[ \Rightarrow  \quad \left| {\left| {\vec a} \right| - \left| {\vec b} \right|} \right| \le \left| {\vec a + \vec b} \right|\]

The equality holds when \(\vec a\,\,{\rm{and}}\,\,\vec b\) are precisely in the opposite direction

The main point to understand from this example is how easily vector relations follows from corresponding geometrical facts.

Example – 2

Suppose that the vectors \(\vec a\,\,{\rm{and}}\,\,\vec b\) represent two adjacent sides of a regular hexagon. Find the vectors representing the other sides.

Solution: Let the hexagon be A1A2A3A4A5A6, as shown:

First of all, we note an important geometrical property of a regular hexagon:

\[\begin{align}&\quad{Diagonal{\rm{ }}\qquad =\qquad {\rm{ }}2{\rm{ }} \times {\rm{ }}side}\\&{ \Rightarrow \quad\;\;  {A_1}{A_4}{\rm{ }}\qquad =\qquad {\rm{ }}2{\rm{ }} \times {A_2}{A_3}}\end{align}\]

Also, since  \({A_1}{A_{4}}||{A_2}{A_3}\), we have

\[\begin{align}\quad\overrightarrow {{A_1}{A_4}}\qquad&\rm{ =\qquad   2} \times \overrightarrow {{A_2}{A_3}} \\&=\qquad 2\,\vec b\end{align}\]

Now we use the triangle law to determine the various sides:

\[\begin{align}\;\;\overrightarrow {{A_3}{A_4}}\quad & =\quad \overrightarrow {{A_1}{A_4}}  - \overrightarrow {{A_1}{A_3}} \\\;\;\;\quad\qquad&=\quad 2\vec b - \left( {\vec a + \vec b} \right)\\\qquad\quad\;\;\;&=\quad\vec b - \vec a\\\;\;\;
\overrightarrow {{A_4}{A_5}}\quad &=\;\;\;\;  - \vec a\left( {only{\rm{ \;}}the{\rm{\; }}sense{\rm{\; }}differs;{\rm{\;}}support{\rm{ \;}}is{\rm{\; }}parallel{\rm{ \;}}to{\rm{\; }}the{\rm{\;}}support{\rm{ \;}}of{\rm{\; }}\vec a{\rm{ }}} \right)\\\;\;\;\overrightarrow {{A_5}{A_6}}\quad  &=\quad  - \,\overrightarrow {{A_2}{A_3}} \\\qquad\quad &= \quad - \vec b\\~~\overrightarrow {{A_6}{A_1}}\quad & = \quad - \,\overrightarrow {{A_3}{A_4}} \\ \qquad~~~&= \quad\vec a - \vec b\end{align}\]

Thus, all sides are expressible in terms of \(\vec a\,\,{\rm{and}}\,\,\vec b\).

Example – 3

What can be interpreted about  \(\vec a\,\,{\rm{and}}\,\,\vec b\) if they satisfy the relation:

\[\left| {\vec a + \vec b} \right| = \left| {\vec a - \vec b} \right|\]

Solution: Make  \(\vec a\,\,{\rm{and}}\,\,\vec b\)  co-initial so that they form the adjacent sides of a parallelogram:

We have,

\[\left| {\vec a + \vec b} \right| = \left| {\overrightarrow {OC} } \right| = OC\]

\[and\;\left| {\vec a - \vec b} \right| = \left| {\overrightarrow {BA} } \right| = BA\]

Thus, the stated relation implies that the two diagonals of the parallelogram OACB are equal, which can only happen if OACB is a rectangle.

This implies that \(\vec a\,\,{\rm{and}}\,\,\vec b\) form the adjacent sides of a rectangle. In other words, \(\vec a\,\,{\rm{and}}\,\,\vec b\) are perpendicular to each other.

Download SOLVED Practice Questions of Examples On Addition And Subtraction Of Vectors for FREE
Vectors
grade 11 | Questions Set 1
Vectors
grade 11 | Answers Set 1
Vectors
grade 11 | Questions Set 2
Vectors
grade 11 | Answers Set 2
Three Dimensional Geometry
grade 11 | Questions Set 2
Three Dimensional Geometry
grade 11 | Answers Set 2
Three Dimensional Geometry
grade 11 | Questions Set 1
Three Dimensional Geometry
grade 11 | Answers Set 1
Download SOLVED Practice Questions of Examples On Addition And Subtraction Of Vectors for FREE
Vectors
grade 11 | Questions Set 1
Vectors
grade 11 | Answers Set 1
Vectors
grade 11 | Questions Set 2
Vectors
grade 11 | Answers Set 2
Three Dimensional Geometry
grade 11 | Questions Set 2
Three Dimensional Geometry
grade 11 | Answers Set 2
Three Dimensional Geometry
grade 11 | Questions Set 1
Three Dimensional Geometry
grade 11 | Answers Set 1
Learn from the best math teachers and top your exams

  • Live one on one classroom and doubt clearing
  • Practice worksheets in and after class for conceptual clarity
  • Personalized curriculum to keep up with school