# Examples On Homogeneous Differential Equations

Go back to  'Differential Equations'

Example – 9

Solve the DE $$xdy - ydx = \sqrt {{x^2} + {y^2}} dx.$$

Solution: Upon rearrangement, we have

\begin{align} & \frac{{dy}}{{dx}} = \frac{{y + \sqrt {{x^2} + {y^2}} }}{x}\\ &\quad \;\; = \left( {\frac{y}{x}} \right) + \sqrt {1 + {{\left( {\frac{y}{x}} \right)}^2}}\end{align}

This is obviously a first degree homogeneous DE. We substitute $$y = vx$$ to obtain:

\begin{align} & \qquad \;\;v + x\frac{{dv}}{{dx}} = v + \sqrt {1 + {v^2}} \\& \Rightarrow \quad \frac{{dv}}{{\sqrt {1 + {v^2}} }} = \frac{{dx}}{x}\end{align}

Integrating both sides, we have

\begin{align}&\qquad \ln \left| {v + \sqrt {1 + {v^2}} } \right| = \ln x + \ln C\\ &\qquad\qquad\qquad\qquad \;\;\;= \ln Cx\\&\Rightarrow \quad \frac{y}{x} + \sqrt {1 + \frac{{{y^2}}}{{{x^2}}}} = Cx\end{align}

Example – 10

Solve the DE $$\left( {1 + {e^{x/y}}} \right)dx + {e^{x/y}}\left( {1 - \frac{x}{y}} \right)dy = 0.$$

Solution: This DE can be rearranged as

$\frac{{dx}}{{dy}} = \frac{{{e^{x/y}}\left( {\frac{x}{y} - 1} \right)}}{{{e^{x/y}} + 1}}$

Using the substituting $$x = vy$$ (note : not $$y = vx)$$ can reduce this DE to a VS form. (We did not use $$y = vx$$ since that would’ve led to an expression involving complicated exponentials).

We now have

\begin{align} & \qquad v + y\frac{{dv}}{{dy}} = \frac{{{e^v}\left( {v - 1} \right)}}{{{e^v} + 1}}\\&\Rightarrow \quad \frac{{dy}}{y} \quad\;\;= - \frac{{{e^v} + 1}}{{{e^v} + v}}dv\end{align}

Integrating both sides, we have

\begin{align} & \qquad \;\;\ln\,y = - \ln \left| {{e^v} + v} \right| + \ln C\\ &\Rightarrow \quad y({e^v} + v) = C\\&\Rightarrow \quad {e^{x/y}} + \frac{x}{y} = \frac{C}{y} \end{align}

This example should serve the show that $$y = vx$$ will not always be the most appropriate substitution to solve a homogeneous DE; $$x = vy$$ could be more appropriate in such a scenario, as in the example above.