Examples On Integration By Substitution Set-13

Go back to  'Indefinite Integration'

Example - 34

Evaluate \(\begin{align}\int {\frac{{\sqrt {\cos 2x} }}{{\sin x}}} \,\,dx\end{align}\)

Solution: \[\;\;\;\; I = \int {\frac{{\sqrt {{{\cos }^2}x - {{\sin }^2}x} }}{{\sin x}}} \,\,dx\\ = \int {\sqrt {{{\cot }^2}x - 1} } \,\,dx\]

The substitution \(\cot x = \sec \theta \) can help us simplify this integral:

\[\begin{align}&\qquad \cot x = \sec \theta \\ & \Rightarrow\quad - {\rm{cose}}{{\rm{c}}^2}xdx = \sec \theta \tan \theta d\theta \\ & \Rightarrow\quad I = \int {\sqrt {{{\sec }^2}\theta - 1} } \,\, \cdot \;\;\frac{{\sec \theta \tan \theta }}{{ - {\rm{cose}}{{\rm{c}}^2}x}}\,\,d\theta  \\ &\qquad\quad \begin{array}{l} = - \int {\frac{{\sec \theta {{\tan }^2}\theta }}{{1 + {{\sec }^2}\theta }}} \,\,d\theta \left\{ \begin{array}{l}{\rm{\;Now\;convert \;this\;expression\;to\;one\;}}\\{\rm{involving\;sin}}\theta \,{\rm{\;and\;cos}}\theta \,{\rm{\;terms}}\end{array} \right\}\\ = - \int {\frac{{{{\sin }^2}\theta }}{{\cos \theta + {{\cos }^3}\theta }}} \,\,d\theta \\ = - \int {\frac{{{{\sin }^2}\theta }}{{\cos \theta \left( {1 + {{\cos }^2}\theta } \right)}}} \,\,d\theta \left\{ \begin{array}{l}{\rm{Now}}\,{\rm{write si}}{{\rm{n}}^{\rm{2}}}{\rm{\theta }}\\{\rm{as }}1 - {\cos ^2}\theta \end{array} \right\}\\ = \int {\frac{{{{\cos }^2}\theta - 1}}{{\cos \theta \left( {1 + {{\cos }^2}\theta } \right)}}} \,\,d\theta \\ = - \int {\frac{{\left( {{{\cos }^2}\theta + 1} \right) - 2{{\cos }^2}\theta }}{{\cos \theta \left( {1 + {{\cos }^2}\theta } \right)}}} \,\,d\theta \\ = - \int {\sec \theta d\theta + 2} \int {\frac{{\cos \theta }}{{1 + {{\cos }^2}\theta }}} \,\,d\theta \\ = - \ln \left| {\sec \theta + \tan \theta } \right| + 2\int {\frac{{\cos \theta }}{{2 - {{\sin }^2}\theta }}\,\,d\theta }\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \searrow \\ {\rm{Now\;use\;the\;substitution\;}}\sin \theta = t\\ \\ = - \ln \left| {\sec \theta + \tan \theta } \right| + 2\int {\frac{{dt}}{{{{\left( {\sqrt 2 } \right)}^2} - {t^2}}}} \\ = - \ln \left| {\sec \theta + \tan \theta } \right| + \frac{2}{{2\sqrt 2 }}\ln \left| {\frac{{\sqrt 2 + t}}{{\sqrt 2 - t}}} \right| + C\\ = - \ln \left| {\cot x + \sqrt {{{\cot }^2}x - 1} } \right| + \frac{1}{{\sqrt 2 }}\ln \left| {\frac{{\sqrt 2 + \sqrt {1 - {{\tan }^2}x} }}{{\sqrt 2 - \sqrt {1 - {{\tan }^2}x} }}} \right| + C\end{array}\ \end{align}\]
 

Example – 35

Evaluate \(\begin{align}\int {{{\sin }^{ - 1}}\left( {\frac{{2x + 2}}{{\sqrt {4{x^2} + 8x + 13} }}} \right)} \,\,dx\end{align}\)

Solution: We have to some how manipulate the expression inside the brackets so that it assumes the form \(\sin \theta .\) Why? Because that would lead to a cancellation of \('{\sin ^{ - 1}}'\,\,{\rm{with}}\,\,'\sin '\) and we’d be left with only \(\theta \) .

The denominator is

\[4{x^2} + 8x + 13\]

\[\begin{array}{l} = 4{x^2} + 8x + 4 + 9\\ = {\left( {2x + 2} \right)^2} + {3^2}\end{array}\]

We can use the substitution \(2x + 2 = 3\tan \theta \) to reduce the denominator to a (simpler) trignometric term:


\[\begin{align}&\qquad\;\; 2x + 2 = 3\tan \theta \\ &\Rightarrow\quad 2dx = 3{\sec ^2}\theta d\theta \\ &\Rightarrow\quad I= \int {{{\sin }^{ - 1}}\left( {\frac{{3\tan \theta }}{{\sqrt {{3^2}{{\tan }^2}\theta } + {3^2}}}} \right)} \cdot \left( {\frac{3}{2}{{\sec }^2}\theta d\theta } \right) \\ &\quad\qquad\;= \frac{3}{2}\int {{{\sin }^{ - 1}}\left( {\frac{{\tan \theta }}{{\sec \theta }}} \right)} {\sec ^2}\theta d\theta \\&\quad\qquad\; = \frac{3}{2}\int {{{\sin }^{ - 1}}\left( {\sin \theta } \right)} {\sec ^2}\theta d\theta \\&\quad\qquad\; = \frac{3}{2}\int \theta {\sec ^2}\theta d\theta \end{align}\]

We will continue the solution in example 42 when we’ve studied integration by parts. This example was included here to illustrate the substitution technique involved.

Download SOLVED Practice Questions of Examples On Integration By Substitution Set-13 for FREE
Indefinite Integration
grade 11 | Questions Set 1
Indefinite Integration
grade 11 | Answers Set 1
Indefinite Integration
grade 11 | Questions Set 2
Indefinite Integration
grade 11 | Answers Set 2
Download SOLVED Practice Questions of Examples On Integration By Substitution Set-13 for FREE
Indefinite Integration
grade 11 | Questions Set 1
Indefinite Integration
grade 11 | Answers Set 1
Indefinite Integration
grade 11 | Questions Set 2
Indefinite Integration
grade 11 | Answers Set 2
Learn from the best math teachers and top your exams

  • Live one on one classroom and doubt clearing
  • Practice worksheets in and after class for conceptual clarity
  • Personalized curriculum to keep up with school