In the verge of coronavirus pandemic, we are providing FREE access to our entire Online Curriculum to ensure Learning Doesn't STOP!

Examples On Binomial Theorem For Positive Integer Indices

Go back to  'Binomial Theorem'

Example – 3

Evaluate the sum \(^n{C_0} + {\,^n}{C_1} + {\,^n}{C_2} + ... + {\,^n}{C_n}\) .

Solution:    We have already evaluated this sum in the chapter on P & C.  That approach was as follows: this sum basically counts the number of all sub-groups of a set of size n ; this can also be counted by focusing on each element of the set, which has two corresponding choices - you either include it into your sub-group or you don’t, which means that the total number of ways to form sub-groups is 2 × 2 × 2 .... n times = 2 n . The sum of the binomial coefficients therefore equals 2 n .

Here, we evaluate the same sum using a binomial approach. Consider the following expansion:

\[{\left( {1 + x} \right)^n} = \,{\,^n}{C_0} + {\,^n}{C_1}x + {\,^n}{C_2}\,{x^2} + {\,^n}{C_3}\,{x^3} + ... + {\,^n}{C_n}\,{x^n}\]

If we put x = 1, we simply obtain

\({2^n} = {\,^n}{C_0} + {\,^n}{C_1} + {\,^n}{C_2} + ...{\,^n}{C_n}\)

Thus, the same result is obtainable from both a combinatorial and a binomial approach.

We can also derive another useful result by putting x = –1 in the above relation, so that we obtain

\[\begin{array}{l}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,0 = {\,^n}{C_0} - {\,^n}{C_1} + {\,^n}{C_2} - {\,^n}{C_3} + ... + {\left( { - 1} \right)^n}{\,^n}{C_n}\\ \Rightarrow  \qquad { ^n}{C_0} + {\,^n}{C_2} + {\,^n}{C_4} + ... = {\,^n}{C_1} + {\,^n}{C_3} + {\,^n}{C_5} + ...\end{array}\]

This states the sum of the even-numbered coefficients is equal to the sum of the odd-numbered coefficients. Can you prove this using a combinatorial approach?

As an exercise, prove the following relations:

\[\begin{array}{l}^n{C_0}{2^n} + {\,^n}{C_1}{2^{n - 1}} + {\,^n}{C_2}\,{2^{n - 2}} + ...{\,^n}{C_n} = {3^n} + \\\\^n{C_0} - {\,^n}{C_1}x + {\,^n}{C_2}\,{x^2}\,\, - ...\, + {\left( { - 1} \right)^n}{\,^n}{C_n}{x^n} = {\left( {1 - x} \right)^n}\\\\^n{C_0} - \,\frac{{^n{C_1}}}{2} + \,\frac{{^n{C_2}}}{{{2^2}}}\, - \frac{{^n{C_3}}}{{{2^3}}} + ...\, + \frac{{{{\left( { - 1} \right)}^n}{\,^n}{C_n}}}{{{2^n}}} = \frac{1}{{{2^n}}}\end{array}\]

Example – 4

(a)     What is the greatest coefficient in the expansion of \({\left( {x + y} \right)^n}\) ?

(b)     What is the greatest term in the expression of \({\left( {x + y} \right)^n}\) ?

Solution:   (a) For this part, we basically need to only determine \(\max \left( {^n{C_r}} \right){\rm{for}}\,\,0 \le r \le n\,;\) x and y have no role to play in this part.

To find the greatest coefficient, consider the following ratio:

\[\begin{array}{l}q = \frac{{^n{C_{r + 1}}}}{{^n{C_r}}} = \frac{{\frac{{n!}}{{\left( {r + 1} \right)!\left( {n - r - 1} \right)!}}}}{{\frac{{n!}}{{r!\left( {n - r} \right)!}}}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{n - r}}{{r + 1}}\end{array}\]

Thus,

\[\begin{array}{l}q > 1 \qquad  \Rightarrow  \qquad \frac{{n - r}}{{r + 1}} > 1\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Rightarrow  \qquad n - r > r + 1\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Rightarrow  \qquad r < \frac{{n - 1}}{2}\end{array}\]

Similarly,

\[\begin{array}{l}q < 1 \qquad  \Rightarrow  \qquad \frac{{n - r}}{{r + 1}} < 1\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Rightarrow  \qquad n - r < r + 1\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Rightarrow  \qquad r > \frac{{n - 1}}{2}\end{array}\]

Thus,

\[\left. \begin{array}{l} { ^n}{C_{r + 1}} > {\,^n}{C_r} \qquad {\rm{whenever}} \qquad r < \frac{{n - 1}}{2}\\{\rm{and}} \qquad { ^n}{C_{r + 1}} < {\,^n}{C_r} \qquad {\rm{whenever}} \qquad r > \frac{{n - 1}}{2}\,\end{array} \right\}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,...\left( 1 \right)\]

If n is odd, we have

\[^n{C_{\frac{{n - 1}}{2}}} > {\,^n}{C_{\frac{{n - 3}}{2}}}\]

and \[^n{C_{\frac{{n + 3}}{2}}} < {\,^n}{C_{\frac{{n + 1}}{2}}}\]

Also, since

\[^n{C_{\frac{{n - 1}}{2}}} = {\,^n}{C_{\frac{{n + 1}}{2}}}\]

we see that for odd n, the two middle coefficients are the greatest. This can be verified by considering the following expansion:

\[\begin{array}{l}{\left( {x + y} \right)^5} = {x^5} + 5{x^4}y + \mathop {10}\limits_ \nwarrow  {x^3}{y^2} + \mathop {10}\limits_ \nearrow  {x^2}{y^3} + 5x{y^4} + {y^5}\\ \qquad \,\,{ \qquad ^{\scriptstyle\,\,\,\,\,\,\,\,\,\,\,\,{\rm{The}}\,\,{\rm{two}}\,\,{\rm{middle coefficients are }}\atop\scriptstyle\,\,\,\,\,\,\,\,\,\,\,\,{\rm{the}}\,\,{\rm{greatest}}\,\,{\rm{for}}\,\,{\rm{odd}}\,\,\,n}}\,\, \end{array}\]

If n is even, (1) gives

\[^n{C_{\frac{n}{2}}} > {\,^n}{C_{\frac{n}{2} - 1}}\]

and   \(^n{C_{\frac{n}{2} + 1}} < \,{\,^n}{C_{\frac{n}{2}}}\)

In this case therefore, the greatest coefficient is the single middle coefficient \(^n{C_{\frac{n}{2}}}\) . Lets verify this again:

\[\begin{array}{l}{\left( {x + y} \right)^6} = {x^6} + 6{x^5}y + 15{x^4}{y^2} + \mathop {20}\limits_ \nearrow  \,{x^3}{y^3} + 15{x^2}{y^4} + 6x{y^5} + {y^6}\\\qquad \,\,{ ^{\scriptstyle\, \qquad \,\,\,{\rm{The}}\,\,{\rm{single}}\,\,{\rm{middle coefficient is }}\atop\scriptstyle\, \qquad \,\,\,{\rm{the}}\,\,{\rm{greatest}}\,\,{\rm{for}}\,\,{\rm{even}}\,\,\,n}}\,\, \qquad \end{array}\]

(b) To find the greatest term, we must also consider x and y.  We again follow the approach of part (a):

\[\begin{align}{}q = \frac{{{T_{r + 1}}}}{{{T_r}}} = \frac{{^n{C_r}{x^{n - r}}{y^r}}}{{^n{C_{r - 1}}{x^{n - r + 1}}{y^{r - 1}}}}\\\\\,\,\, = \frac{{\left( {n - r + 1} \right)}}{r}.\frac{y}{x}\end{align}\]

Observe that

\[\begin{align}{}q > 1 \qquad  \Rightarrow  \qquad \frac{{\left( {n - r + 1} \right)}}{r} \cdot \frac{y}{x} > 1\\\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Rightarrow  \qquad \left\{ {\frac{{\left( {n + 1} \right)y}}{{x + y}} - r} \right\} \cdot \left( {\frac{{x + y}}{{r\,x}}} \right) > 0\end{align}\]

If \(\begin{align}\frac{{\left( {n + 1} \right)y}}{{x + y}}\end{align}\) is an integer m, which must lie in (0, n ], we see that there are two greatest terms T m  and  T m + 1 . (Why).  Here’s the explanation:

We have

\(q > 1\) or  \(1 \le r \le m\)   and \(q < 1\) for \(r > m\)

\( \Rightarrow  \qquad {T_r} < {T_{r + 1}}\)   for         \(1 \le r \le m\) and       \({T_r} > {T_{r + 1}}\)   for  \(r > m\)

\( \Rightarrow  \qquad {T_{m - 1}} < {T_m}\,\,,\,\,{T_{m + 1}} > {T_{m + 2}},\,\,{T_m} = {T_{m + 1}}\)

\( \Rightarrow  \qquad {T_m}\,\,{\rm{and}}\,\,{T_{m + 1}}\) are the two greatest terms

Now, if \(\begin{align}\frac{{\left( {n + 1} \right)y}}{{x + y}}\end{align}\) is a non-integer, assume \(\begin{align}\left[ {\frac{{\left( {n + 1} \right)y}}{{x + y}}} \right] = m\end{align}\) .

We now have

\(q > 1\)   for  \(1 \le r \le m\) and \(q < 1\) for \(r > m\)

\( \Rightarrow  \qquad {T_r} < {T_{r + 1}}\)   for  \(1 \le r \le m\)    and \({T_r} > {T_{r + 1}}\) for \(r > m\)

\( \Rightarrow  \qquad {T_m} < {T_{m + 1}},\,\,{T_{m + 1}} > {T_{m + 2}}\)

\( \Rightarrow  \qquad {T_{m + 1}}\)   is the greatest term.

Example –5

How will you expand the multinomial expression \({\left( {{x_1} + {x_2} + ... + {x_m}} \right)^n}\) ?

Solution:    We will approach this problem using combinatorics. Note that a general term of the expansion would be of the form (without the coefficient)

\[x_1^{{n_1}}x_2^{{n_2}}x_3^{n{ \qquad_3}}....x_m^{{n_m}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,...\left( 1 \right)\]

where the various powers must always sum to n (why?).

i.e.,

\[{n_1} + {n_2} + {n_3} + ... + {n_m} = n\]

Now, to evaluate the coefficient of the term in (1), we consider the multinomial expression in expanded form:

\[\underbrace {\left( {{x_1} + {x_2} + ... + {x_m}} \right)\left( {{x_1} + {x_2} + ... + {x_m}} \right)..............\left( {{x_1} + {x_2} + ...{x_m}} \right)}_{n\,\,{\rm{times}}}\]

To generate the term in (1), we must get x 1  from n 1  terms, x 2  from n 2  terms and so on. Let us find the number of ways in which this can be done.

First select those n 1  multinomials that will contribute x 1  : this can be done in \(^n{C_{{n_1}}}\)  ways. Now, from the remaining \(\left( {n - {n_1}} \right)\)  multinomials, select those n 2  multinomials that will contribute x 2 : this can be done in \(^{\left( {n - {n_1}} \right)}{C_{{n_2}}}\) ways. Continuing this process, we see that the number of ways to get \({x_1}\,{\rm{from}}\,\,{n_1},{x_2}\) from n 2  ... and so on, that is, the number of times the term in (1) will be generated in the expansion is

\[\begin{align}{}\,\,\,\,\,&{\,^n}{C_{{n_1}}} \times {\,^{\left( {n - {n_1}} \right)}}{C_{{n_2}}} \times {\,^{\left( {n - {n_1} - {n_2}} \right)}}{C_{{n_3}}} \times ...\\ &= \frac{{n!}}{{{n_1}!\left( {n - {n_1}} \right)!}}\,\, \times \,\,\frac{{\left( {n - {n_1}} \right)!}}{{{n_2}!\left( {n - {n_1} - {n_2}} \right)!}}\,\, \times \,\,\frac{{\left( {n - {n_1} - {n_2}} \right)!}}{{{n_3}!\left( {n - {n_1} - {n_2} - {n_3}} \right)!}}\,\, \times \,\,...\\ &= \,\,\frac{{n!}}{{{n_1}!\,\,{n_2}!...{n_m}!}}\,\end{align}\]

This is what is known as the general multinomial coefficient . The multinomial expansion can now be written compactly as

\[{\left( {{x_1} + {x_2} + ... + {x_m}} \right)^n} = \sum {\frac{{n!}}{{{n_1}!{n_2}!...{n_m}!}}} \,\,x_1^{{n_1}}x_2^{{n_2}}...\,x_m^{{n_m}}\]

where the summation is carried out over all possible combinations of the n i 's such that \(\sum {{n_i} = n} \) . For example, in \({\left( {{x_1} + {x_2} + {x_3}} \right)^4}\,\) , let us consider some terms in the expansion:

Example –6

Find the coefficient of x 4  in the expansion of \({\left( {1 + x - \frac{2}{{{x^2}}}} \right)^{10}}\) .

Solution:    From the previous example, the general term in the expansion will be

\[\begin{align}{}\,\,\,\,\,\frac{{10!}}{{{n_1}!\;{n_2}!\;{n_3}!}}\;{(1)^{{n_1}}}{(x)^{{n_{^2}}}}{\left( {\frac{{ - 2}}{{{x^2}}}} \right)^{{n_{^3}}}}\\ = \frac{{10}}{{{n_1}!\;{n_2}!\;{n_3}!}}\;{x^{{n_2} - 2{n_3}}}{( - 2)^{{n_3}}}\end{align}\]

where \({n_1} + {n_2} + {n_3}\) must be 10.

Now, x 4  is generated whenever \({n_2} - 2{n_3} = 4.\) The possible values of the triplet \(({n_1},\;{n_2},\;{n_3})\) can now simply be listed out:

\[({n_1},\;{n_2},\;{n_3}) \equiv (6,\;4,\;0),\;(3,\;6,\;1),\;(0,\;8,\;2)\]

Thus, the (total) coefficient of x 4  is

\[\frac{{10!}}{{6!\;4!\;0!}}{( - 2)^0} + \frac{{10!}}{{3!\;6!\;1!}}{( - 2)^1} + \frac{{10!}}{{0!\;8!\;2!}}{( - 2)^2}\]

= – 1290 (verify)

Download SOLVED Practice Questions of Examples On Binomial Theorem For Positive Integer Indices for FREE
Binomial Theorem
grade 11 | Questions Set 1
Binomial Theorem
grade 11 | Answers Set 1
Binomial Theorem
grade 11 | Questions Set 2
Binomial Theorem
grade 11 | Answers Set 2
Download SOLVED Practice Questions of Examples On Binomial Theorem For Positive Integer Indices for FREE
Binomial Theorem
grade 11 | Questions Set 1
Binomial Theorem
grade 11 | Answers Set 1
Binomial Theorem
grade 11 | Questions Set 2
Binomial Theorem
grade 11 | Answers Set 2
Learn from the best math teachers and top your exams

  • Live one on one classroom and doubt clearing
  • Practice worksheets in and after class for conceptual clarity
  • Personalized curriculum to keep up with school