In the verge of coronavirus pandemic, we are providing FREE access to our entire Online Curriculum to ensure Learning Doesn't STOP!

Examples On Tangents To Ellipses Set-1

Go back to  'Ellipse'

Example – 16

Tangents drawn at \(A({\theta _1})andB({\theta _2})\) on the ellipse \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) intersect in P. Find the coordinates of P.

Solution: The equations of the tangents at A and B, using the parametric form for the tangent, are

\[\begin{align}&\frac{x}{a}\cos {\theta _1} + \frac{y}{b}\sin {\theta _1} = 1\qquad\qquad...\left( 1 \right)\\&\frac{x}{a}\cos {\theta _1} + \frac{y}{b}\sin {\theta _1} = 1\qquad\qquad...\left( 2 \right)\end{align}\]

\((1) \times \cos {\theta _2} - (2) \times \cos {\theta _1}gives\)

\[\begin{align}&\frac{y}{b}\sin ({\theta _1} - {\theta _2}) = \cos {\theta _2} - \cos {\theta _1}\\ &\Rightarrow \quad y = b\frac{{(\cos {\theta _2} - \cos {\theta _1})}}{{\sin ({\theta _1} - {\theta _2})}}\\&\qquad\quad{\rm{ }} = \frac{{b\sin \left( {\frac{{{\theta _1} + {\theta _2}}}{2}} \right)}}{{\cos \left( {\frac{{{\theta _1} - {\theta _2}}}{2}} \right)}}\end{align}\]

Similarly,

\((1) \times \sin {\theta _2} - (2) \times \sin {\theta _1}gives\)

\[x = \frac{{a\cos \left( {\frac{{{\theta _1} + {\theta _2}}}{2}} \right)}}{{\cos \left( {\frac{{{\theta _1} - {\theta _2}}}{2}} \right)}}\]

Thus, the coordinates of the point of intersection P are

\[P \equiv \left( {\frac{{a\cos \left( {\frac{{{\theta _1} + {\theta _2}}}{2}} \right)}}{{\cos \left( {\frac{{{\theta _1} - {\theta _2}}}{2}} \right)}},\frac{{b\sin \left( {\frac{{{\theta _1} + {\theta _2}}}{2}} \right)}}{{\cos \left( {\frac{{{\theta _1} - {\theta _2}}}{2}} \right)}}} \right)\]

DIRECTOR CIRCLE

Example – 17

Find the locus of a moving point P such that the two tangents drawn from it to an ellipse are perpendicular.

Solution: Let the equation of the ellipse be \(\begin{align}\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\end{align}\) and P be the point (h, k).

Any tangent to this ellipse is of the form

\[y = mx + \sqrt {{a^2}{m^2} + {b^2}} \]

If this passes through P(h, k), we have

\[\begin{align}&k = mh + \sqrt {{a^2}{m^2} + {b^2}} \\&\Rightarrow\quad  {(k - mh)^2} = {a^2}{m^2} + {b^2}\\& \Rightarrow \quad ({h^2} - {a^2}){m^2} - 2hkm + {k^2} - {b^2} = 0\end{align}\]

As expected, we obtain a quadratic in m which will give us two roots, say m1 and m2. Since the tangents through P are perpendicular, we have

\[\begin{align}&{m_1}{m_2} = 1\\ &\Rightarrow\quad \frac{{{k^2} - {b^2}}}{{{h^2} - {a^2}}} = - 1\\ &\Rightarrow \;\quad {h^2} + {k^2} = {a^2} + {b^2}\end{align}\]

Thus, the locus of P is

\[{x^2} + {y^2} = {a^2} + {b^2}\]

which is a circle and is termed the Director Circle of the ellipse. From any point on the Director Circle of an ellipse, the two tangents drawn to the ellipse are perpendicular.

Download SOLVED Practice Questions of Examples On Tangents To Ellipses Set-1 for FREE
Ellipses
grade 11 | Questions Set 1
Ellipses
grade 11 | Answers Set 1
Ellipses
grade 11 | Questions Set 2
Ellipses
grade 11 | Answers Set 2
Download SOLVED Practice Questions of Examples On Tangents To Ellipses Set-1 for FREE
Ellipses
grade 11 | Questions Set 1
Ellipses
grade 11 | Answers Set 1
Ellipses
grade 11 | Questions Set 2
Ellipses
grade 11 | Answers Set 2
Learn from the best math teachers and top your exams

  • Live one on one classroom and doubt clearing
  • Practice worksheets in and after class for conceptual clarity
  • Personalized curriculum to keep up with school