In the verge of coronavirus pandemic, we are providing FREE access to our entire Online Curriculum to ensure Learning Doesn't STOP!

Row And Column Transformations

Go back to  'Determinants and Matrices'

Property - 6 : Row and column transformations

The transformations property is the most widely used property to simplify determinants. This says that:

The value of a determinant does not change when any row (or column) is multiplied by a scalar (a real number) and is then added to or subtracted from any other row (or column).

For example, lets consider

\[\Delta =\left| \ \begin{matrix}   {{a}_{1}} & {{a}_{2}} & {{a}_{3}}  \\   {{b}_{1}} & {{b}_{2}} & {{b}_{3}}  \\   {{c}_{1}} & {{c}_{2}} & {{c}_{3}}  \\\end{matrix}\  \right|\ \]

Lets multiply the 3rd row by \(\lambda \) and add to R1. This operation can be succintly denoted as \({{R}_{1}}\to {{R}_{1}}+\lambda {{R}_{3}}.\) Our property tells us that the determinant’s value stays the same. Indeed:

\[\begin{align}   \Delta& =\left| \ \begin{matrix}   {{a}_{1}}+\lambda {{c}_{1}} & {{a}_{2}}+\lambda {{c}_{2}} & {{a}_{3}}+\lambda {{c}_{3}}  \\   {{b}_{1}} & {{b}_{2}} & {{b}_{3}}  \\   {{c}_{1}} & {{c}_{2}} & {{c}_{3}}  \\\end{matrix}\  \right| \qquad \qquad \qquad \qquad{{R}_{1}}\to {{R}_{1}}+\lambda {{C}_{3}} \\  & =\left| \ \begin{matrix}
   {{a}_{1}} & {{a}_{2}} & {{a}_{3}}  \\   {{b}_{1}} & {{b}_{2}} & {{b}_{3}}  \\   {{c}_{1}} & {{c}_{2}} & {{c}_{3}}  \\\end{matrix}\  \right|\ \ +\ \ \left| \begin{matrix}   \lambda {{c}_{1}} & \lambda {{c}_{2}} & \lambda {{c}_{3}}  \\   {{b}_{1}} & {{b}_{2}} & {{b}_{3}}  \\   {{c}_{1}} & {{c}_{2}} & {{c}_{3}}  \\\end{matrix} \right|\ \ \ \ \ \  \qquad \qquad \quad \left( \text{Splitting along }{{R}_{1}} \right) \\  & \qquad \qquad \qquad \qquad \qquad \qquad  \qquad  \downarrow  \\  &  \qquad \qquad \qquad \qquad \qquad \qquad \lambda \left| \ \begin{matrix}   {{c}_{1}} & {{c}_{2}} & {{c}_{3}}  \\   {{b}_{1}} & {{b}_{2}} & {{b}_{3}}  \\
   {{c}_{1}} & {{c}_{2}} & {{c}_{3}}  \\\end{matrix}\  \right|\ \ \ \qquad \qquad \quad \left(\text{This has two rows identical, so its value is 0 } \right) \\ \end{align}\]

Let us see how this property helps us in simplifying the evaluation of determinants.

Example - 4

Evaluate

\(\Delta =\left| \ \begin{matrix}   1 & a & {{a}^{2}}  \\   1 & b & {{b}^{2}}  \\   1 & c & {{c}^{2}}  \\\end{matrix}\  \right|\)

Solution:

\[\begin{align}\Delta &=\left| \ \begin{matrix}   1& a & {{a}^{2}}  \\   0 & b-a & {{b}^{2}}-{{a}^{2}}  \\   1 & c & {{c}^{2}}  \\\end{matrix}\  \right|\ \qquad \qquad \ {{R}_{2}}\to {{R}_{2}}-R{{}_{1}}\\\\&=\left| \ \begin{matrix}   1& a & {{a}^{2}}  \\   0 & b-a & {{b}^{2}}-{{a}^{2}}  \\   0 & c-a & {{c}^{2}}-{{a}^{2}}  \\\end{matrix}\   \right|\qquad \qquad{{R}_{3}}\to {{R}_{3}}-R{{ }_{1}}\end{align}\]

Theses two transformations could have been done in single step, and later on, we’ll combine such steps.

Now, we expand along C1:

\[\begin{align}& \Delta =\left( b-a \right)\left( {{c}^{2}}-{{a}^{2}} \right)-\left( {{b}^{2}}-{{a}^{2}} \right)\left( c-a \right) \\ & \,\,\,\,\,=\left( b-a \right)\left( c-a \right)\left\{ \left( c+a \right)-\left( b+a \right) \right\} \\ 
 & \,\,\,\,\,=\left( a-b \right)\left( b-c \right)\left( c-a \right) \\ \end{align}\]

Example - 5

Evaluate

\(\Delta =\left| \ \begin{matrix}   1 & a & {{a}^{3}}  \\   1 & b & {{b}^{3}}  \\   1 & c & {{c}^{3}}  \\\end{matrix}\  \right|\)

Solution:

\[\Delta =\left| \ \begin{matrix}   1 & a & {{a}^{3}}  \\   0 & b-a & {{b}^{3}}-{{a}^{3}}  \\   0 & c-a & {{c}^{3}}-{{a}^{3}}  \\\end{matrix}\  \right| \qquad \begin{matrix}   {{R}_{2}}\to {{R}_{2}}-{{R}_{1}}  \\   {{R}_{3}}\to {{R}_{3}}-{{R}_{1}}  \\\end{matrix}\]

Expanding along C1,

\[\begin{align}  \Delta  & =\left( b-a \right)\left( {{c}^{3}}-{{a}^{3}} \right)-\left( {{b}^{3}}-{{a}^{3}} \right)\left( c-a \right) \\  & =\left( b-a \right)\left( c-a \right)\left\{ \left( {{c}^{2}}+{{a}^{2}}+ac \right)-\left( {{b}^{2}}+{{a}^{2}}+ab \right) \right\} \\  & =\left( a-b \right)\left( b-c \right)\left( c-a \right)\left( a+b+c \right) \\ 
\end{align}\]

Download SOLVED Practice Questions of Row And Column Transformations for FREE
Determinants and Matrices
grade 11 | Answers Set 2
Determinants and Matrices
grade 11 | Questions Set 1
Determinants and Matrices
grade 11 | Answers Set 1
Determinants and Matrices
grade 11 | Questions Set 2
Download SOLVED Practice Questions of Row And Column Transformations for FREE
Determinants and Matrices
grade 11 | Answers Set 2
Determinants and Matrices
grade 11 | Questions Set 1
Determinants and Matrices
grade 11 | Answers Set 1
Determinants and Matrices
grade 11 | Questions Set 2
Learn from the best math teachers and top your exams

  • Live one on one classroom and doubt clearing
  • Practice worksheets in and after class for conceptual clarity
  • Personalized curriculum to keep up with school