In the verge of coronavirus pandemic, we are providing FREE access to our entire Online Curriculum to ensure Learning Doesn't STOP!

Applications of Derivatives Set 12

Go back to  'SOLVED EXAMPLES'

Example - 26

Find the minimum value of

\[f(x) = |\sin x + \cos x + \tan x + \cot x + \sec x + {\rm{cosec}}\;x\;|\]

Solution:         \(\begin{align}f(x) = \left| {\;\sin x + \cos x + \frac{1}{{\sin x\cos x}} + \frac{{\sin x + \cos x}}{{\sin x\cos x}}\;} \right|\end{align}\)

Using \(\sin x + \cos x = t,\) and therefore \(\sin x\cos x = \frac{{{t^2} - 1}}{2}\), we have

\[\begin{align}&f(t) = \left| {\;t + \frac{{2(1 + t)}}{{{t^2} - 1}}\;} \right| = \left| {\;t + \frac{2}{{t - 1}}\;} \right|\\\\&\,\,\,\,\,\,\,\,\,\,\, = \left| {\;(t - 1) + \frac{2}{{t - 1}}\; + 1\;} \right|\\\\&\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \le 2\sqrt 2  + 1\end{align}\]

The maximum value is \(2\sqrt 2  + 1\)

 

Example - 27

Let \(f(x) = \left( {{x^2} + bx + c} \right){e^x}\)

(a) Does \(f > 0\;{\rm{imply}}\;f' > 0\)             (b) Does \(f' > 0\;{\rm{imply}}\;f > 0\)

Solution:         We have \(\begin{align}f'(x) = \left( {{x^2} + (b + 2)x + b + c} \right){e^x}\end{align}\). Thus,

\[f > 0   \Leftrightarrow  {b^2} - 4c < 0\;\;{\rm{and}}\;\;f' > 0\;\;\; \Leftrightarrow \;\;\;{b^2} - 4c + 4 < 0\]

(a) Let\(f > 0\). Thus,\({b^2} - 4c < 0\), but nothing can be said about the sign of \({b^2} - 4c + 4\), i.e., it may be positive \(f > 0\) Thus,  does not necessarily imply  \(f' > 0\).

(b) Let  \(f > 0.\) Thus,\({b^2} - 4c + 4 < 0\), which necessarily implies that \({b^2} - 4c < 0,\;{\rm{i}}{\rm{.e}}.,\;f > 0\).

 

Example - 28

Find the minimum value of \(|f(x)|\) given by

\[f(x) = \frac{{{{\left( {x + \frac{1}{x}} \right)}^6} - \left( {{x^6} + \frac{1}{{{x^6}}}} \right) - 2}}{{{{\left( {x + \frac{1}{x}} \right)}^3} + \left( {{x^3} + \frac{1}{{{x^3}}}} \right)}}\]

Solution:         Substitute \(\begin{align}{\left( {x + \frac{1}{x}} \right)^3} = a\;\;{\rm{and}}\;\;{x^3} + \frac{1}{{{x^3}}} = b\end{align}\). Thus,

\[\begin{align}&f(x) = \left| {\;\frac{{{a^2} - {b^2}}}{{a + b}}\;} \right| = \;|a - b|\; = \left| {\;{{\left( {x + \frac{1}{x}} \right)}^3} - {x^3} - \frac{1}{{{x^3}}}\;} \right|\\\\&\,\,\,\,\,\,\,\,\,\,\, = 3\left| {\;x + \frac{1}{x}\;} \right| \ge 6\end{align}\]

The minimum value of \(|f(x)|\)is 6.

 

Learn from the best math teachers and top your exams

  • Live one on one classroom and doubt clearing
  • Practice worksheets in and after class for conceptual clarity
  • Personalized curriculum to keep up with school