In the verge of coronavirus pandemic, we are providing FREE access to our entire Online Curriculum to ensure Learning Doesn't STOP!

Splitting Integrand Into Two Functions

Go back to  'Definite Integration'

(11) \(\int\limits_0^{2a} {f(x)dx = } \int\limits_0^a {\left\{ {f(x) + f(2a - x)} \right\}dx} \)

The justification for this property is described below:

\[\int\limits_0^{2a} {f(x)dx} = \int\limits_0^a {f(x)dx + } \int\limits_a^{2a} {f(x)dx} \]

To evaluate , \(\int\limits_a^{2a} {f(x)dx} \) we can equivalently use the variable \((2a - x)\) instead of x, but the limits of integration will change from (a to 2a) to (0 to a). This is because as x varies from 0 to a, 2ax will vary from (2a to a) covering the same interval [a, 2a]. Thus,

\[\int\limits_a^{2a} {f(x)dx = } \int\limits_0^a {f(2a - x)\,dx} \]

Hence, the stated assertion is valid

Example –17

If f is an even function, then prove that \(\int\limits_0^{\pi /2} {f(\cos 2x)\cos x\,dx = \sqrt 2 \,\int\limits_0^{\pi /4} {f(\sin 2x)\cos x\,dx} } \)

Solution: On the left side, the integration limits are \(\left( {0\,\,{\rm{to }}\frac{\pi }{2}} \right)\) while on the right side, they are \(\left( {0\,\,{\rm{to }}\frac{\pi }{4}} \right)\) .

Thus, it would be appropriate to use Property -11

\[\begin{align} \int\limits_{0}^{\pi /2}{f(\cos 2x)\cos x\,dx}&=\int\limits_{0}^{\pi /4}{\left\{ f\left( \cos 2x \right)\cos x+f\left( \cos 2\left( \frac{\pi }{2}-x \right) \right)\cos \left( \frac{\pi }{2}-x \right) \right\}\,dx} \\ & =\int\limits_{0}^{\pi /4}{\left\{ f(\cos 2x)\cos x+f(-\cos 2x)\sin x \right\}\,\,dx} \\ & ~~~[sincefis\text{ }an\text{ }even\text{ }function,\text{ }f(-\cos 2x)=f(\cos 2x)] \\ & =\int\limits_{0}^{\pi /4}{f(\cos 2x)\{\cos x+\sin x\}\,dx} \\ &=\sqrt{2}\int\limits_{0}^{\pi /4}{f(\cos 2x)\sin \left( x+\frac{\pi }{4} \right)\,\,dx}x \qquad \qquad \qquad \dots (1) \\&\left[ \begin{array}{l}{\rm{Now\;we\;use\;property\; - \;9\; to\;obtain\;the\;final\;form\;that\;we\;require;\;}}\\{\rm{use\;the\;substitution\;}}x \to \frac{\pi }{4}\, - x{\rm{\;in\;the\;function\;to\;be\;integrated\;in (1)}}\end{array} \right]\\ &= \sqrt 2 \int\limits_0^{\pi /4} {f\left( {\cos 2\left( {\frac{\pi }{4} - x} \right)} \right)\sin \left( {\frac{\pi }{4} - x + \frac{\pi }{4}} \right)\,dx} \\& = \sqrt 2 \int\limits_0^{\pi /4} {f(\sin 2x)\cos x\,\,dx} \end{align} \]

We could also have started with property -9 directly:

\[\begin{align}&I = \int\limits_0^{\pi /2} {f(\cos 2x)\cos x\,\,dx} \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,...\left( 2 \right)\\\,\,\,\, &= \int\limits_0^{\pi /2} {f\left( {\cos 2\left( {\frac{\pi }{2} - x} \right)} \right)\cos \left( {\frac{\pi }{2} - x} \right)\,dx} \\\,\,\,\, &= \int\limits_0^{\pi /2} {f\left( { - \cos 2x} \right)\sin x\,dx} \\\,\,\,\, &= \int\limits_0^{\pi /2} {f\left( {\cos 2x} \right)\sin x\,dx} \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,...\left( 3 \right)\end{align}\]

Adding (2) and (3) we obtain

\[2I = \int\limits_0^{\pi /2} {f(\cos 2x)(\sin x + \cos x)\,dx} \]

Notice now that the function being integrated on the right side above is symmetric about\(\begin{align}\frac{\pi }{4}\end{align};\,\) i.e., if we substitute \(\begin{align}\frac{\pi }{2} - x\end{align}\) for x, we will obtain the same function again. Thus, (property 7):

\[\begin{align}2I \;&= 2\int\limits_0^{\pi /4} {f(\cos 2x)(\sin x + \cos x)\,dx} \\\ &= 2\sqrt 2 \int\limits_0^{\pi /4} {f(\cos 2x)\sin \left( {x + \frac{\pi }{4}} \right)\,dx} \\ \Rightarrow \quad I& = \sqrt 2 \int\limits_0^{\pi /4} {f(\cos 2x)\sin \left( {x + \frac{\pi }{4}} \right)\,dx} \end{align}\]

This is the same expression that we had obtained in (1). From here, we can proceed as described earlier.

Download SOLVED Practice Questions of Splitting Integrand Into Two Functions for FREE
Definite Integration
grade 11 | Answers Set 2
Definite Integration
grade 11 | Questions Set 1
Definite Integration
grade 11 | Answers Set 1
Definite Integration
grade 11 | Questions Set 2
Download SOLVED Practice Questions of Splitting Integrand Into Two Functions for FREE
Definite Integration
grade 11 | Answers Set 2
Definite Integration
grade 11 | Questions Set 1
Definite Integration
grade 11 | Answers Set 1
Definite Integration
grade 11 | Questions Set 2
Learn from the best math teachers and top your exams

  • Live one on one classroom and doubt clearing
  • Practice worksheets in and after class for conceptual clarity
  • Personalized curriculum to keep up with school