In the verge of coronavirus pandemic, we are providing FREE access to our entire Online Curriculum to ensure Learning Doesn't STOP!

Sum And Product Of Roots Of Quadratics

Go back to  'Quadratic Equations'

In the last section we saw the quadratic formula that gives the roots of a quadratic expression. From now on we will be denoting the two roots by \(\alpha \)  and \(\beta \).

\[\alpha ,\beta  = \frac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]

Equation (3) tells us that a quadratic expression can be written in terms of its roots as follows:

\[\begin{align}&f\left( x \right) = a{x^2} + bx + c = \,\,a\left( {x - \alpha } \right)\left( {x - \beta } \right)\\\\  \,\,\,\,\,\,\,\,\,\, &\qquad\qquad\qquad\quad\quad\;\;\;= \,\,a\left( {{x^2} - \left( {\alpha  + \beta } \right)x + \alpha \beta } \right)\\\\  \,\,\,\,\,\,\,\,\,\, &\qquad\qquad\qquad\quad\quad\;\;\;= \,\,a{x^2} - a\left( {\alpha  + \beta } \right)x + a\alpha \beta \\\\  \,\,\,\,\,\,\,\,\,\, &\qquad\qquad\qquad\quad\quad\;\;\;= \,\,a{x^2} - aSx + aP = a\left( {{x^2} - Sx + P} \right)\end{align}\]

where \(S\) denotes the sum and  \(P\)  the product of the roots. Comparing the coefficients of  \(‘x’\) on both sides gives:

\[\begin{align}&\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, - a\left( {\alpha + \beta } \right)\;=\,\, b\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,&\qquad\qquad\qquad\;\alpha \beta \,\,\,\,\,\,\,\, = c\end{align}\]

\[\begin{align}&\Rightarrow\qquad S = {\rm{Sum}}\,{\rm{of}}\,{\rm{roots}} = \alpha + \beta = \frac{{ - b}}{a}\\&\Rightarrow\qquad P = {\rm{Product}}\,{\rm{of}}\,{\rm{roots}} = \alpha \beta = \frac{c}{a}\end{align}\]

These are important results. They can of course be derived directly from the expression for the roots given by the quadratic formula. For example

\[\alpha  + \beta  = \frac{{ - b + \sqrt {{b^2} - 4ac} }}{{2a}} + \frac{{ - b - \sqrt {{b^2} - 4ac} }}{{2a}} = \frac{{ - b}}{a}\]

Now lets see some examples that use these results:

Example- 13

If \(\alpha ,\;\beta \) are the roots of \(a{x^2} + bx + c = 0,\)  find the quadratic equation whose roots are \({\left( {a\alpha  + b} \right)^{ - 1}}{\rm{and}}\;\; {\left( {a\beta  + b} \right)^{ - 1}}\)

Solution: We have

\[\begin{align}&\alpha  + \beta  = \frac{{ - b}}{a}\\&\quad\alpha \beta  = \frac{c}{a}\end{align}\]

for the required quadratic equation,

\[\begin{align}&\quad S = \frac{1}{{a\alpha  + b}} + \frac{1}{{a\beta + b}} = \frac{{a\left( {\alpha  + \beta } \right) + 2b}}{{{a^2}\alpha \beta  + ab\left( {\alpha  + \beta } \right) + {b^2}}}\\\\\,\,\,\, &\quad= \frac{{a \times \frac{{ - b}}{a} + 2b}}{{{a^2} \times \frac{c}{a} + ab \times \frac{{ - b}}{a} + {b^2}}} = \frac{b}{{ac}}\\\\&P = \frac{1}{{a\alpha  + b}}\, \cdot \frac{1}{{a\beta  + b}} = \frac{1}{{{a^2}\alpha \beta  + ab\left( {\alpha  + \beta } \right) + {b^2}}} = \frac{1}{{ac}}\end{align}\]

The required equation is

\[\begin{align}{x^2} - Sx + P = 0 \,\,\,\,\,\,\, &\Rightarrow \,\,{x^2} - \frac{b}{{ac}}x + \frac{1}{{ac}} = 0 \\\\&\Rightarrow \;\;ac{x^2} - bx + 1= 0\end{align}\]

Example- 14

If \(\alpha ,\beta \) are the roots of \(a{x^2} + bx + c = 0,\) find the values of:

(a) \({\alpha ^2} + {\beta ^2}\)         (b) \({\alpha ^3} + {\beta ^3}\)         (c) \({\alpha ^4} + {\beta ^4}\)         (d) \(\begin{align}\frac{\alpha }{\beta } + \frac{\beta }{\alpha }\end{align}\)

Solution: This question is very simple since all you have to do is rearrange the given expression in terms of what you already know, i.e \(\left( {\alpha  + \beta } \right)\)  and  \(\left( {\alpha \beta } \right)\).

(a) \(\begin{align}{\alpha ^2} + {\beta ^2} = {\left( {\alpha  + \beta } \right)^2} - 2\alpha \beta  = \frac{{{b^2}}}{{{a^2}}} - \frac{{2c}}{a} = \frac{{{b^2} - 2ac}}{{{a^2}}}\end{align}\)

(b)\(\begin{align}&{\alpha ^3} + {\beta ^3} = {\left( {\alpha  + \beta } \right)^3} - 3\alpha \beta \left( {\alpha  + \beta } \right) = \frac{{ - {b^3}}}{{{a^3}}} + \frac{{3bc}}{{{a^2}}} = \frac{{3abc - {b^3}}}{{{a^3}}}\end{align}\)

(c) \(\begin{align}&{\alpha ^4} + {\beta ^4} = {\left( {{\alpha ^2} + {\beta ^2}} \right)^2} - 2{\left( {\alpha \beta } \right)^2} = {\left( {\frac{{{b^2} - 2ac}}{{{a^2}}}} \right)^2}\;-\;\frac{{2{c^2}}}{{{a^2}}}\left({{\rm{From}}\,{\rm{part}}\left( a \right)} \right)\end{align}\)

\(\begin{align}&= \frac{{{b^4} - 4a{b^2}c + 2{a^2}{c^2}}}{{{a^4}}}\end{align}\)

(d) \(\begin{align}\frac{\alpha }{\beta } + \frac{\beta }{\alpha } = \frac{{{\alpha ^2} + {\beta ^2}}}{{\alpha \beta }} = \frac{{{b^2} - 2ac}}{{{a^2}}} \cdot \frac{a}{c} = \frac{{{b^2} - 2ac}}{{ac}}\end{align}\)

Learn from the best math teachers and top your exams

  • Live one on one classroom and doubt clearing
  • Practice worksheets in and after class for conceptual clarity
  • Personalized curriculum to keep up with school