Exercise 1.6 Number Systems NCERT Solutions Class 9

Go back to  'Number Systems'

Chapter 1 Ex.1.6 Question 1

Find:

(i) \(\begin{align}{64^{\frac{1}{2}}}\end{align}\)

(ii) \(\begin{align}{32^{\frac{1}{5}}}\end{align}\)

(iii) \(\begin{align}{125^{\frac{1}{3}}}\end{align}\)

 

Solution

Video Solution

Steps:

(i) \(\begin{align}{64^{\frac{1}{2}}}\end{align}\)

\[\begin{align} {64}^{\frac{1}{2}}&={{({{8}^{2}})}^{\frac{1}{2}}}\\&={{8}^{2\times \frac{1}{2}}}\quad \text{Using (}{{a}^{p}}{{)}^{q}}= {{a}^{pq}}\!\!~\!\! \\&={{8}^{1}}\\&=8\end{align}\]

Where \(\begin{align} a > 0, p\, \text{and} \,q \end{align}\) are rational numbers.

(ii) \(\begin{align}{32^{\frac{1}{5}}}\end{align}\)

\[\begin{align}{32^{\frac{1}{5}}}&={\left(2^{5}\right)^{\frac{1}{5}}} \quad {\text { Using }\left({a}^{{p}}\right)^{{q}}={a}^{{pq}}} \\ &={(2)^{5 \times \frac{1}{5}}} \\ &={2^{1}} \\ &={2}\end{align}\]

(iii) \(\begin{align}{125^{\frac{1}{3}}}\end{align}\)

\[\begin{align}{125^{\frac{1}{3}}}&={\left(5^{3}\right)^{\frac{1}{3}}} \quad {\text { Using }\left({a}^{{p}}\right)^{{q}}={a}^{{pq}}} \\ &={(5)^{3 \times \frac{1}{3}}} \\ &=5^{1}\\&=5\end{align}\]

Chapter 1 Ex.1.6 Question 2

Find: \(\begin{align} \end{align}\)

(i) \(\begin{align} {9^{\frac{3}{2}}}\end{align}\)

(ii) \(\begin{align}{32^{\frac{2}{5}}}\end{align}\)

(iii) \(\begin{align} {16^{\frac{3}{4}}}\end{align}\)

(iv) \(\begin{align}{125^{\frac{{ - 1}}{3}}}\end{align}\)

 

Solution

Video Solution

Steps:

(i)  \(\begin{align}{9^{\frac{3}{2}}} & \end{align}\)

\[\begin{align}{9^{\frac{3}{2}}}&={\left(3^{2}\right)^{\frac{3}{2}}}  \quad {\text { using }\left({a}^{{p}}\right)^{{q}}={a}^{{pq}}} \\ &=(3)^{2 \times \frac{3}{2}}\\&=3^{3}\\&=27\end{align}\]

(ii) \(\begin{align}{32^{\frac{2}{5}}}\end{align}\)

\[\begin{align}{32^{\frac{2}{5}}}&={\left(2^{5}\right)^{\frac{2}{5}}}  \quad {\text { using }\left(a^{p}\right)^{q}=a^{p q}} \\&=(2)^{5 \times \frac{2}{5}}\\&=2^{2}\\&=4\end{align}\]

(iii) \(\begin{align}{16^{\frac{3}{4}}}\,\end{align}\)

\[\begin{align}{16^{\frac{3}{4}}}&={\left(2^{4}\right)^{\frac{3}{4}}} \quad {\text {using }\left({a}^{{p}}\right)^{{q}}={a}^{{pq}}} \\&={(2)^{4 \times \frac{3}{4}}}\\& =2^{3}\\&=8\end{align}\]

(iv) \(\begin{align}{125^{\frac{{ - 1}}{3}}}\end{align}\)

\[\begin{align}{125^{\frac{{ - 1}}{3}}}&={\left(5^{3}\right)^{\frac{-1}{3}}} \\&={(5)^{3 \times \frac{-1}{3}}} \quad {\text { using }\left({a}^{{p}}\right)^{{q}}={a}^{{pq}}} \\&={5^{-1}} \\&={\frac{1}{5}}\end{align}\]

Chapter 1 Ex.1.6 Question 3

 Simplify:

(i) \(\begin{align}{2^{\frac{2}{3}}}.\;{2^{\frac{1}{5}}}\end{align}\)

(ii) \(\begin{align}{\left( {\frac{1}{{{3^3}}}} \right)^7} \end{align}\)

(iii) \(\begin{align}\frac{{{{11}^{\frac{1}{2}}}}}{{{{11}^{\frac{1}{4}}}}} \end{align}\)

(iv) \(\begin{align} 7^{\frac{1}{2}}\,.\,8^{\frac{1}{2}}\end{align}\)

 

Solution

Video Solution

Steps:

(i) \(\begin{align}{2^{\frac{2}{3}}}\;.\;{2^{\frac{1}{5}}} \end{align}\)

\(\because {{a}^{p}}.\ {{a}^{q}}={{a}^{p+q}}\) (For \(a>0,\)  \(p\)  and \(q\)  are rational numbers.) 

\[\begin{align} & ={{2}^{\frac{2}{3}+\frac{1}{5}}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\\ & ={{2}^{\frac{10+3}{15}}} \\ & ={{2}^{\frac{13}{15}}}\end{align}\]

(ii)

\(\begin{align}{{\left( \frac{1}{{{3}^{3}}} \right)}^{7}}&=\frac{{{1}^{7}}}{{{\left( {{3}^{3}} \right)}^{7}}} \\ & =\frac{1}{{{3}^{21}}} \\ & ={{3}^{-21}}\end{align}\)

(iii) \(\begin{align}\frac{{{{11}^{\frac{1}{2}}}}}{{{{11}^{\frac{1}{4}}}}} \end{align}\)

\[\begin{align}  \frac{{{11}^{\frac{1}{2}}}}{{{11}^{\frac{1}{4}}}}&={{11}^{\frac{1}{2}\,-\,\frac{1}{4}}} \\  &={{11}^{\frac{2-1}{4}}} \\   &={{11}^{\frac{1}{4}}} \\  &=\sqrt[4]{11} \\ \end{align}\]

(iv) \(\begin{align} 7^{\frac{1}{2}}\,.\,8^{\frac{1}{2}}\end{align}\)

\[\begin{align}  & ={{(7\times 8)}^{\frac{1}{2}}} \\  & ={{\left( 56 \right)}^{\frac{1}{2}}} \\ \end{align}\]

  
Download Cuemath NCERT App
Related Sections
Related Sections

Learn from the best math teachers and top your exams

Learn from the best

math teachers and top

your exams


Personalized Curriculum
Instant Doubts clarification
Cover latest CBSE Syllabus
Unlimited Mock & Practice tests
Covers CBSE, ICSE, IB curriculum

Instant doubt clearing with Cuemath Advanced Math Program
0