Exercise 12.3 Algebraic-Expressions -NCERT Solutions Class 7

Go back to  'Algebraic Expressions'

Chapter 12 Ex.12.3 Question 1

If \(m = 2\), find the value of:

(i)  \(m = 2\)

(ii) \(3m - 5\)

(iii) \({\rm{ }}9{\rm{ }}-{\rm{ }}5m\)

(iv) \(3{m^2} - 2m - 7\)

(v) \(\begin{align} \frac{{5m}}{2} - 4\end{align} \)

Solution

Video Solution

What is Known?

Value of \(m\).

What is unknown?

Value of the given expressions.

Reasoning:

This is based on concept of putting given value of variable and then performing the arithmetic operation as given in the question.

Steps:

Value of \(m\) is given as \( 2\).

 (i)  \(m = 2\)

\[\begin{align}& {\rm{ = 2}} - {\rm{2}}\\{\rm{ Ans }} &\,{\rm{ = }}\,{\rm{0 }}\end{align}\]

(ii) \(3m - 5\)

\[\begin{align}& = 3 \times 2 - \left( 5 \right)\\& = 6 - 5\\{\rm{ Ans }} &= 1\end{align}\]

(iii) \({\rm{ }}9{\rm{ }}-{\rm{ }}5m\)

\[\begin{align}& = 9 - \left( {5 \times 2} \right)\\& = 9 - 10\\{\rm{ Ans }} &= - 1\end{align}\]

(iv) \(3{m^2} - 2m - 7\)

\[\begin{align}& = 3{{\left( 2 \right)}^2} - \left( {2 \times 2} \right) - 7\\& = 3 \times 2 \times 2 - \left( 4 \right) - 7\\& = 12 - 4 - 7\\{\rm{ Ans }} & = 1\end{align}\]

(v) \(\begin{align} \frac{{5m}}{2} - 4\end{align} \)

\[\begin{align}& = \frac{{5 \times 2}}{2} - 4\\& = \frac{{10}}{2} - 4\\& = 5 - 4\\{\rm{ Ans }} & = 1\end{align}\]

Chapter 12 Ex.12.3 Question 2

 If \(p = \,– 2\), find the value of:

(i) \(4p + 7\)

(ii) \(- 3{p^2} + 4p + 7\)

(iii) \(- 2{p^3} - 3{p^2} + 4p + 7\)

Solution

Video Solution

What is known?

Value of \(p\).

What is unknown?

Value of the given expressions.

Reasoning:

This is based on concept of putting given value of variable and then performing the arithmetic operation as given in the question.

Steps:

Value of \(p\) is given as \(- 2\)

(i) \(4p + 7\)

\[\begin{align} &=\! 4 \!\times\!\! -\! 2 \!+\! \left( 7 \right)\\ &= \!-\! 8 \!+\! 7\\&{\rm{ Ans }}  = \!-\! 1\end{align}\]

(ii) \(- 3{p^2} + 4p + 7\)

\[\begin{align}&= \!-\! 3 \!\times\! {{\left( { - 2} \right)}^2} \!+\!4 \!\times\! \left( { - 2} \right) \!+\! 7\\ &= \! \left( { - 3 \!\times\! \!- 2 \!\times\! \!- 2} \right) \!+\! \left( { - 8} \right) \!+\! 7\\ &= \!-\! 12 \!-\! 8 \!+\! 7\\&{\rm{ Ans }}  = \!-\! 13\end{align}\]

(iii) \(- 2{p^3} - 3{p^2} + 4p + 7\)

\[\begin{align} &=\!-\!2{{\left( -2 \right)}^{3}}\!-\!3{{\left( -2 \right)}^{2}}\!+\!4\left( -2 \right)\!+\!7 \\ &=\!-\!2 \!\times\! \!-2\!\times\! \!-2\!\times\!\! -2\left( 3\!\times\!  \!-2\!\times\! \!-2 \right)\!+\!\left( 4\!\times\! \!-2 \right)\!+\!7 \\ &=\!16\left( 12 \right)\!+\!\left( -8 \right)\!+\!7 \\ &\text{Ans} =\!3 \end{align}\]

Chapter 12 Ex.12.3 Question 3

Find the value of the following expressions, when \(x = \,–1\)

(i) \(2x - 7\)

(ii) \(- x + 2\)

(iii) \({x^2} + 2x + 1\)

(iv) \(2{x^2} - x - 2\)

Solution

Video Solution

What is Known?

Value of \(x\)

What is unknown?

Value of the given expressions.

Reasoning:

This is based on concept of putting given value of variable and then performing the arithmetic operation as given in the question.

Steps:

Value of \(x\) is given as \(–1\)

(i) \(2x - 7\)

\[\begin{align}& = 2 \times - 1 - (7)\\& = - 2 - 7\\{\rm{ Ans }} & = - 9\end{align}\]

(ii) \(- x + 2\)

\[\begin{align}& = - \left( { - 1} \right) + 2\\& = 1 + 2\\{\rm{Ans}} & = 3\end{align}\]

(iii) \({x^2} + 2x + 1\)

\[\begin{align}& = {\left( { - 1} \right)^2} + \left( {2 \times - 1} \right) + 1\\& = - 1 \times - 1 + \left( { - 2} \right) + 1\\& = 1 - 2 + 1\\{\rm{ Ans}} & = 0\end{align}\]

(iv) \(2{x^2} - x - 2\)

\[\begin{align}&= 2{{\left( { - 1} \right)}^2} - \left( { - 1} \right) - 2\\&= 2 \times - 1 \times - 1 + 1 - 2\\&= 2 + 1 - 2\\{\rm{ Ans }} &= 1\end{align}\]

Chapter 12 Ex.12.3 Question 4

If \(a = 2\), \(b =\, – 2\), find the value of:

(i) \({a^2} + {b^2}\)

(ii) \({a^2} + ab + {b^2}\)

(iii) \({a^2} - {b^2}\)

Solution

Video Solution

What is Known?

Value of \(a\) and \(b\)

What is unknown?

Value of the given expressions.

Reasoning:

This is based on concept of putting given value of variable and then performing the arithmetic operation as given in the question.

Steps:

Value of \(a\) is given as \(2\) and \(b\) is \(-2\)

(i) \({a^2} + {b^2}\)

\[\begin{align}& = {2^2} + {\left( { - 2} \right)^2}\\& = \left( {2 \times 2} \right) + \left( { - 2 \times - 2} \right)\\& = 4 + 4\\{\rm{Ans}} & = 8\,\end{align}\]

(ii) \({a^2} + ab + {b^2}\)

\(\begin{align} & = {2^2} + \left\{ {\left( 2 \right) \times \left( { - 2} \right)} \right\} + {\left( { - 2} \right)^2}\\& = 4 + \left( { - 4} \right) + 4\\& = 4 - 4 + 4\\{\rm{Ans}} & = 4\,\end{align}\)

(iii) \({a^2} - {b^2}\)

\[\begin{align}& = {2^2} - {\left( { - 2} \right)^2}\\& = 4 - 4\\{\rm{ Ans}} & = 0\end{align}\]

Chapter 12 Ex.12.3 Question 5

When \(a = 0\), \(b = \,– 1\), find the value of the given expressions:

(i) \(2a+\text{ }2b\)

(ii) \(2{{a}^{2}}+{{b}^{2}}+\text{ }1\)

(iii) \(2{{a}^{2}}b+\text{ }2a{{b}^{2}}+ab\)

(iv) \({{a}^{2}}+ab+\text{ }2\)

Solution

Video Solution

What is Known?

Value of \(a\) and \(b\)

What is unknown?

Value of the given expressions.

Reasoning:

This is based on concept of putting given value of variable and then performing the arithmetic operation as given in the question.

Steps:

Value of \(a\) is given as \(0\) and \(b\) is \(–1\)

(i) \(2a+\text{ }2b\)

\[\begin{align}& = \left( {2 \times 0} \right) + \left( {2 \times - 1} \right)\\& = 0 + \left( { - 2} \right)\\{\rm{ Ans }} & = - 2\end{align}\]

(ii) \(2{{a}^{2}}+{{b}^{2}}+\text{ }1\)

\[\begin{align}& = \left( {2 \times {0^2}} \right) + {\left( { - 1} \right)^2} + 1\\ & = 0 + 1 + 1\\& = 2\end{align}\]

(iii) \(2{{a}^{2}}b+\text{ }2a{{b}^{2}}+ab\)

\[\begin{align} &= \left[ \begin{array}{l}\,\,2 \times 0 \times 0 \times  - 1 + \\\left( {2 \times 0 \times  - {1^2}} \right) + 0 \times  - 1\end{array} \right]\\ &= 0 + 0 + 0\\{\rm{Ans}} &= 0\end{align}\]

(iv) \({{a}^{2}}+ab+\text{ }2\)

\[\begin{align}& = {0^2} + 0 \times - 1 + 2\\& = 0 + 0 + 2\\{\rm{ Ans }} & = 2\end{align}\]

Chapter 12 Ex.12.3 Question 6

Simplify the expressions and find the value if \(x\) is equal to \(2\)

(i) \( x + 7 + 4\left( {x - 5} \right)\)

(ii) \(3\left( {x + 2} \right) + 5x - 7\)

(iii) \(6x + 5\left( {x - 2} \right)\)

(iv) \(4\left( {2x - 1} \right) + 3x + 11\)

Solution

Video Solution

What is Known?

Value of \(x\)

What is unknown?

Value of the given expressions.

Reasoning:

This is based on concept of simplification of like terms and then putting given value of variable and then performing the arithmetic operation as given in the question. Value of \(x\) is given as \(2\)

Steps:

(i) \( x + 7 + 4\left( {x - 5} \right)\)

\[\begin{align}& =x+7+4x-20 \\ & =5x-13\end{align}\]

Now putting value of \(x=2\)  

\[\begin{align}&5x-13 \\ & =\left( 5\times 2 \right)-13 \\ & =10-13 \\ \text{ Ans} & =-3 \\ \end{align}\]

(ii) \(3\left( {x + 2} \right) + 5x - 7\)

\[\begin{align}&=3x+6+5x-7  \\&=8x-1\end{align}\] 

 Now putting value of \(x=2\)

\[\begin{align}&=\left( 8\times 2 \right)-1  \\&=16-1  \\\text{ Ans} &=15  \\\end{align}\]

(iii) \(6x + 5\left( {x - 2} \right)\)

\[\begin{align}& = 6x + 5x - 10\\& = 11x - 10\end{align}\]

Now putting value of \(x = 2\)

\[\begin{align}& = \left( {11 \times 2} \right) - 10\\\text{ Ans} & = 12\end{align}\]

(iv) \(4\left( {2x - 1} \right) + 3x + 11\)

\[\begin{align}& = 8x - 4 + 3x + 11\\& = 11x + 7\end{align}\]

Now putting value of  \(x = 2\)

\[\begin{align}&= (11 \times 2) + 7\\ & = 22 + 7\\\text{ Ans} & = 29\end{align}\]

Chapter 12 Ex.12.3 Question 7

Simplify these expressions and find their values if \(x = 3\), \(a = \,– 1\), \(b =\, – 2\).

(i) \(3x - 5 - x + 9 \)

(ii) \(2 - 8x + 4x + 4\)

(iii) \(3a + 5 - 8a + 1 \)

(iv) \(10 - 3b - 4 - 5b\)

(v) \(2a - 2b - 4 - 5 + a\)

Solution

Video Solution

What is Known?

Value of \(x\), \(a\) and \(b\)

What is unknown?

Value of the given expressions.

Reasoning:

This is based on concept of simplification of like terms and then putting given value of variable and then performing the arithmetic operation as given in the question.

Steps:

Value of \(x\) is given as \(3\), \(a\) as \(-1\) and \(b\) is \(-2\)

(i) \(3x - 5 - x + 9 \)

\[\begin{align}& = 2x + 4\end{align}\]

Now putting value of \(x = 3\)

\[\begin{align}& = \left( {2 \times 3} \right) + 4\\& = 6 + 4\\{\text{ Ans }} & = 10\end{align}\]

(ii) \(2 - 8x + 4x + 4\)

\[\begin{align}& = - 4x + 6\end{align}\]

Now putting value of \(x = 3\)

\[\begin{align}&= \left( { - 4 \times 3} \right) + 6\\& = - 12 + 6\\{\text{ Ans }} & = - 6\end{align}\]

(iii) \(3a + 5 - 8a + 1 \)

\[\begin{align}= - 5a + 6\end{align}\]

Now putting value of \(a = - 1\)

\[\begin{align}&= \left( { - 5\,\, \times - 1} \right) + 6\\ & = 5 + 6\\{\text{ Ans }} & = 11\end{align}\]

(iv) \(10 - 3b - 4 - 5b\)

\[\begin{align}& = - 8b + 6\end{align}\]

Now putting value of  \(b=- 2\)

\[\begin{align}& = ( - 8 \times - 2) + 6\\& = 16 + 6\\{\text{ Ans }} & = 22\end{align}\]

(v) \(2a - 2b - 4 - 5 + a\)

\[\begin{align}& = 3a - 2b - 9\end{align}\]

Now putting value of \(a = - 1\) and \(b = - 2\)

\[\begin{align} &\left( {3 \times - 1} \right) - \left( {2 \times - 2} \right) - 9\\& = - 3 - ( - 4) - 9\\ & = - 3 + 4 - 9\\{\text{Ans}} & = - 8\,\end{align}\]

Chapter 12 Ex.12.3 Question 8

(i) If \(z = 10\), find the value of \(z^3 – 3(z – 10)\).

(ii) If \(p = \,– 10\), find the value of \(p^2 – 2p\, – 100\)

Solution

Video Solution

Steps:

First simplify the expression

\[\begin{align}={{z}^{3}}-3z+30\end{align}\]

Now putting value of \(z=10\)

\[\begin{align} &={{\left( 10 \right)}^{3}}-\left( 3\times 10 \right)+30  \\&=1000-30+30  \\\text{ Ans } &=1000  \\\end{align}\]

(ii) If \( p = \,– 10\), find the value of \(p^2 – 2p \,– 100\)

Put value of \(p = -10\) to solve the expression

\[\begin{align}&= {\left( { - 10} \right)^2} - \left( {2 \times - 10} \right) - 100\\&= 100 + 20 - 100\\{\text{Ans}} &= 20\end{align}\]

Chapter 12 Ex.12.3 Question 9

What should be the value of \(a\) if the value of \(2x^2 + x – a\) equals to \(5\), when \(x = 0\)?

Solution

Video Solution

Steps:

Given that

\(2x^2 + x – a = 5\)

Also, value of \(x\) is \(0\)

So,

\[\begin{align}2 \times {0^2} + 0 - a &= 5\\ 0- a &= 5\\ - a &= 5\\{\rm{ Ans: }}\; a &= - 5\end{align}\]

Chapter 12 Ex.12.3 Question 10

Simplify the expression and find its value when \(a = 5\) and \(b = \,– 3\).

Solution

Video Solution

Steps:

\[\begin{align}&2\left( {{a^2} + ab} \right){\rm{ }} + {\rm{ }}3{\rm{ }}-ab\\&= 2{a^2} + 2ab + 3 - ab\\&= 2{a^2} + ab + 3\\&= (2 \times 5 \times 5) + (5 \times - 3) + 3\\&= 50 - 15 + 3\\&= 38\end{align}\]

 

  
Download Cuemath NCERT App
Related Sections
Related Sections

Learn from the best math teachers and top your exams

Learn from the best

math teachers and top

your exams


Personalized Curriculum
Instant Doubts clarification
Cover latest CBSE Syllabus
Unlimited Mock & Practice tests
Covers CBSE, ICSE, IB curriculum

Instant doubt clearing with Cuemath Advanced Math Program
0