Factorisation
Exercise 14.4
Find and correct the errors in the statement:
\[4(x - 5) = 4x - 5\]
What is known?
Incorrect mathematical statement.
What is unknown?
Correct mathematical statement.
Reasoning:
Solve L.H.S.
Steps:
\[{\rm{S}} = 4(x - 5) \ne \rm R.H.S.\]
The correct statement is \(4(x - 5) = 4x - 20\)
\[x(3x + 2) = 3{x^2} + 2\]
\[\begin{align} {\rm{L.H.S}} &= x(3x + 2)\\&= 3{x^2} + 2x\\ {\rm{L.H.S}} &\ne {\rm{R.H.S}} \end{align}\]
The correct statement is \(x(3x + 2) = 3{x^2} + 2x\)