Exercise 2.3 Polynomials NCERT Solutions Class 9

Go back to  'Polynomials'

Chapter 2 Ex.2.3 Question 1

Find the remainder when \(\begin{align}x^{3}+3 x^{2}+3 x+1\end{align}\) is divided by

(i) \(\begin{align} x+1 \end{align}\)

(ii) \(\begin{align} x-\frac{1}{2}\end{align}\)

(iii) \(\begin{align} x\end{align}\)

(iv) \(\begin{align} x+\pi\end{align}\)

(v)  \(\begin{align}5+2 x \end{align}\)

Solution

Video Solution

Reasoning:

Let \(p(x)\) be any polynomial of degree greater than or equal to one and let a be any real number. If a polynomial \(p(x)\) is divided by \(\begin{align}x-a\end{align}\) then the remainder is \(p(a).\)

Steps:

\(\begin{align}\text{Let}\;\;p(x)=x^{3}+3 x^{2}+3 x+1\end{align}\)

(i) The root of \(x+1 = 0\) is \(-1\)

\[\begin{align} p(-1) &=(-1)^{3}+3(-1)^{2}+3(-1)+1 \\ &=-1+3-3+1=0 \end{align}\]

Hence by the remainder theorem, \(0\) is the remainder when \(\begin{align} x^{3}+3 x^{2}+3 x+1\end{align}\) is divided by \(x+1.\) We can also say that \(x+1\) is a factor of \(\begin{align}x^{3}+3 x^{2}+3 x+1\end{align}\) .

(ii) The root of \(\begin{align}x-\frac{1}{2}=0 \text { is } \frac{1}{2}\end{align}\)

\[\begin{align} p\left(\frac{1}{2}\right) &=\left(\frac{1}{2}\right)^{3}+3\left(\frac{1}{2}\right)^{2}+3\left(\frac{1}{2}\right)+1 \\ &=\frac{1}{8}+\frac{3}{4}+\frac{3}{2}+1 \\ &=\frac{1+6+12+8}{8}=\frac{27}{8} \end{align}\]

Hence by the remainder theorem, \(\begin{align}\frac{27}{8}\end{align}\) is the remainder when \(\begin{align} x^{3}+3 x^{2}+3 x+1\end{align}\) is divided by \(\begin{align}x-\frac{1}{2}\end{align}\)

(iii) The root of \(\begin{align}x=0 \text { is } 0\end{align}\)

\[\begin{align} p(0)&=(0)^{3}+3(0)^{2}+3(0)+1 \\ &=0+0-0+1 \\ &=1 \end{align}\]

Hence by the remainder theorem, \(1\) is the remainder when \(\begin{align} x^{3}+3 x^{2}+3 x+1 \end{align}\) is divided by \(x .\)

(iv)The root of \(\begin{align}x+\pi=0 \text { is }-\pi \end{align}\)

\[\begin{align} p(-\pi) &=(-\pi)^{3}+3(-\pi)^{2}+3(-\pi)+1 \\ &=-\pi^{3}+3 \pi^{2}-3 \pi+1 \end{align}\]

Hence by the remainder theorem, \(\begin{align} -\pi^{3}+3 \pi^{2}-3 \pi+1\end{align}\)  is the remainder when \(\begin{align}x^{3}+3 x^{2}+3 x+1\end{align}\) is divided by \(\begin{align}x+\pi\end{align}\) .

(v) The root of \(\begin{align}5+2 x=0 \text { is } \frac{-5}{2}\end{align}\)

\[\begin{align}{p\left( {\frac{{ - 5}}{2}} \right)}&{ = \,\,\left[ \begin{array}{l}{\left( {\frac{{ - 5}}{2}} \right)^3} + 3{\left( {\frac{{ - 5}}{2}} \right)^2}+\\  3\left( {\frac{{ - 5}}{2}} \right) + 1\end{array} \right]}\\&{ = \frac{{ - 125}}{8} + \frac{{75}}{4} + \frac{{ - 15}}{2} + 1}\\&{ = \frac{{ - 125 + 150 - 60 + 8}}{8}}\\&{ = \frac{{ - 185 + 158}}{8}}\\&{ = \frac{{ - 27}}{8}}\end{align}\]

Hence by remainder theorem, \(\begin{align}\frac{-27}{8}\end{align}\) is the remainder when \(\begin{align}x^{3}+3 x^{2}+3 x+1\end{align}\) is divided by \(\begin{align}5+2 x\end{align}\) .

Chapter 2 Ex.2.3 Question 2

Find the remainder when \(\begin{align}x^{3}-a x^{2}+6 x-a\end{align}\) is divided by \(x - a.\)

 

Solution

Video Solution

Reasoning:

Let \(p(x)\) be any polynomial of degree greater than or equal to one and let \(a\) be any real number. If a polynomial \(p(x)\) is divided by \(\begin{align}x-a\end{align}\) then the remainder is \(p(a).\)

Steps:

Let \(\begin{align}p(x)=x^{3}-a x^{2}+6 x-a\end{align}\)

The root of \(x-a = 0\) is \(a.\)

\[\begin{align} p(a) &=(a)^{3}-a(a)^{2}+6(a)-a \\ &=a^{3}-a^{3}+5 a \\ &=5 a \end{align}\]

Hence by remainder theorem, \(\begin{align}5 a\end{align}\) is the remainder when \(\begin{align}x^{3}-a x^{2}+6 x-a\end{align}\)  is divided by \(x - a.\)

Chapter 2 Ex.2.3 Question 3

Check whether \(7 + 3x\) is a factor of \(\begin{align}p(x)=3 x^{3}+7 x\end{align}\) .

Solution

Video Solution

Reasoning:

When a polynomial \(p (x)\) is divided by \(x-a\) and by the remainder theorem if \(p(a) = 0\) then \(x – a\) is a factor of \(p(x).\)

Steps:

Let \(\begin{align}p(x)=3 x^{3}+7 x\end{align}\)

The root of \(\begin{align}7+3 x=0 \text { is } \frac{-7}{3}\end{align}\)

\[\begin{align} p\left(\frac{-7}{3}\right) &=3\left(\frac{-7}{3}\right)^{3}+7\left(\frac{-7}{3}\right) \\ &=\frac{3 \times(-343)}{27}+\frac{-49}{3} \\ &=\frac{-343-147}{9} \\ &=\frac{-490}{9} \neq 0 \end{align}\]

Since the remainder of \(\begin{align}p\left(\frac{-7}{3}\right) \neq 0,7+3 x\end{align}\) is not a factor of  \(\begin{align}3 x^{3}+7 x\end{align}\)

  
Download Cuemath NCERT App
Related Sections
Related Sections

Learn from the best math teachers and top your exams

Learn from the best

math teachers and top

your exams


Personalized Curriculum
Instant Doubts clarification
Cover latest CBSE Syllabus
Unlimited Mock & Practice tests
Covers CBSE, ICSE, IB curriculum

Instant doubt clearing with Cuemath Advanced Math Program
0