Exercise 2.5 Polynomials NCERT Solutions Class 9

Go back to  'Polynomials'

Chapter 2 Ex.2.5 Question 1

Use suitable identities to find the following products:

(i) \(\begin{align}(x+4)(x+10)\end{align}\) 

(ii) \(\begin{align}(x+8)(x-10)\end{align}\)

(iii) \(\begin{align}(3 x+4)(3 x-5)\end{align}\)

(iv) \(\begin{align}\left(y^{2}+\frac{3}{2}\right)\left(y^{2}-\frac{3}{2}\right)\end{align}\) 

(v) \(\begin{align}(3-2 x)(3+2 x)\end{align}\)

 

Solution

Video Solution

​​​​​​Reasoning:

Identities: \(\begin{align}(x+a)(x+b)&=x^{2}+(a+b) x+a b \\ (a+b)(a-b)&=a^{2}-b^{2}\end{align}\)

Steps:

\(\begin{align}\text{(i)}\;\;(x+4)(x+10)\end{align}\)

Identity: \(\begin{align}(x+a)(x+b)=x^{2}+(a+b) x+a b\end{align}\)

Here \(\begin{align}\text{a} = {4}, \text{b} = 10\end{align}\)

\[\begin{align}&(x+4)(x+10) \\&=x^{2}+(4+10) x+4 \times 10 \\ &=x^{2}+14 x+40 \end{align}\]

\(\begin{align}\text{(ii)}\;\;(x+8)(x-10)\end{align}\)

Identity: \(\begin{align}(x+a)(x+b)=x^{2}+(a+b) x+a b\end{align}\)

Here \(a =8, b=-10\)

\[\begin{align}&(x+8)(x-10) \\&=x^{2}+(8-10) x+(8)(-10) \\ &=x^{2}-2 x-80 \end{align}\]

\(\begin{align}\text{(iii)}\;\;(3 x+4)(3 x-5)\end{align}\)

Identity: \(\begin{align}(x+a)(x+b)=x^{2}+(a+b) x+a b\end{align}\)

Here \(\begin{align}x \rightarrow 3 x, a=4, b=-5\end{align}\)

\[\begin{align}&(3 x+4)(3 x-5) \\&=(3 x)^{2}+(4-5)(3 x)+(4)(-5) \\ &=9 x^{2}-3 x-20 \end{align}\]

(iv) \(\begin{align}\left(y^{2}+\frac{3}{2}\right)\left(y^{2}-\frac{3}{2}\right)\end{align}\)

Identity: \(\begin{align}(a+b)(a-b)=a^{2}-b^{2}\end{align}\)

Here \(\begin{align}a=y^{2}, b=\frac{3}{2}\end{align}\)

\[\begin{align}&\left(y^{2}+\frac{3}{2}\right)\left(y^{2}-\frac{3}{2}\right) \\&=\left(y^{2}\right)^{2}-\left(\frac{3}{2}\right)^{2} \\ &=y^{4}-\frac{9}{4} \end{align}\]

(v) \(\begin{align}(3-2 x)(3+2 x) \end{align}\)

Identity: \(\begin{align}(a+b)(a-b)=a^{2}-b^{2}\end{align}\)

Here \(\begin{align}a=3, b=2 x\end{align}\)

\[\begin{align}&(3-2 x)(3+2 x) \\&=(3)^{2}-(2 x)^{2} \\ &=9-4 x^{2} \end{align}\]

Chapter 2 Ex.2.5 Question 2

Evaluate the following products without multiplying directly:

(i) \(\begin{align}103 \times 107\end{align}\)

(ii)  \(\begin{align}95 \times 96\end{align}\)

(iii)  \(\begin{align}104 \times 96\end{align}\)

 

Solution

Video Solution

Reasoning:

Identities:

\[\begin{align}(x+a)(x+b)&=x^{2}+(a+b) x+a b \\ (a+b)(a-b)&=a^{2}-b^{2}\end{align}\]

Steps:

(i) \(\begin{align}103 \times 107\end{align}\)

Identity: \(\begin{align}(x+a)(x+b)=x^{2}+(a+b) x+a b\end{align}\)

\[\begin{align} 103 \times 107 &=(100+3)(100+7) \\ &=(100)^{2}\!\!+\!(3\!+\!7)\!(100)\!+\!\!(3)(7) \\\\(\text {Taking } x&=100, a=3, b=7 ) \\ &=10000+1000+21 \\ &=11021 \end{align}\]

(ii)  \(\begin{align}95 \times 96\end{align}\)

Identity: \(\begin{align}(x+a)(x+b)=x^{2}+(a+b) x+a b\end{align}\)

\(\begin{align}{95 \times 96}&={ (100\!-\!5)(100\!-\!4)}\\&={\left[\!\begin{array}{l} {(100)^2}\!\!+\!(\!- 5\!- 4)\\(100)\!+\!( - 5)( - 4)\end{array}\!\right]}\\\\{\rm{(Taking }\;x \!=\! 100,a}&{ = - 5,b = - 4)}\\&{ = 10000 - 900 + 20}\\&{ = 9120}\end{align}\)

(iii)  \(\begin{align}104 \times 96\end{align}\)

Identity: \(\begin{align}(a+b)(a-b)=a^{2}-b^{2}\end{align}\)

\[\begin{align} 104 \times 96 &=(100+4)(100-4) \\ &=(100)^{2}-(4)^{2} \\\\(\text { Taking } a&=100, b=4 ) \\ &=10000-16 \\ &=9984 \end{align}\]

Chapter 2 Ex.2.5 Question 3

Factorise the following using appropriate identities:

(i) \(\begin{align}9 x^{2}+6 x y+y^{2}\end{align}\)

(ii) \(\begin{align} 4 y^{2}-4 y+1\end{align}\)

(iii) \(\begin{align} x^{2}-\frac{y^{2}}{100}\end{align}\)

 

Solution

Video Solution

Reasoning:

Identities:

\[\begin{align}& {(a+b)^{2}=a^{2}+2 a b+b^{2}} \\ {} & {(a-b)^{2}=a^{2}-2 a b+b^{2}} \\ {} & {(a+b)(a-b)=a^{2}-b^{2}}\end{align}\]

Steps:

(i) \(\begin{align}9 x^{2}+6 x y+y^{2}\!=\!(3 x)^{2}\!+\!2(3 x)(y)\!+\!(y)^{2}\end{align}\)

Identity:  \(\begin{align}(a+b)^{2}=a^{2}+2 a b+b^{2}\end{align}\)

Here \(\begin{align} a=3 x, b=y \end{align}\) 

Hence   \(\begin{align}9 x^{2}+6 x y+y^{2}=(3 x+y)^{2}\end{align}\)

(ii) \(\begin{align}4 y^{2}-4 y+1=\left(2 y^{2}\right)-2(2 y)(1)+(1)^{2}\end{align}\)

Identity: \(\begin{align}(a-b)^{2}=a^{2}-2 a b+b^{2}\end{align}\)

Here \(\begin{align} a=2 y, b=1\end{align}\) 

Hence \(\begin{align} 4 y^{2}-4 y+1=(2 y-1)^{2}\end{align}\)

(iii) \(\begin{align}x^{2}-\frac{y^{2}}{100}=(x)^{2}-\left(\frac{y}{10}\right)^{2}\end{align}\)

Identity: \(\begin{align}(a+b)(a-b)=a^{2}-b^{2}\end{align}\)

Here \(\begin{align}&{ a=x, b=\frac{y}{10}} \end{align}\) 

Hence \(\begin{align}{ x^{2}-\frac{y^{2}}{100}=\left(x+\frac{y}{10}\right)\left(x-\frac{y}{10}\right)}\end{align}\)

Chapter 2 Ex.2.5 Question 4

Expand each of the following, using suitable identities:

(i) \(\begin{align}(x+2 y+4 z)^{2}\end{align}\)

(ii) \(\begin{align}(2 x-y+z)^{2}\end{align}\)

(iii)\(\begin{align}(-2 x+3 y+2 z)^{2}\end{align}\)

(iv) \(\begin{align}(3 a-7 b-c)^{2}\end{align}\)

(v)\(\begin{align}(-2 x+5 y-3 z)^{2}\end{align}\)

(vi) \(\begin{align}\left[\frac{1}{4} a-\frac{1}{2} b+1\right]^{2}\end{align}\)

Solution

Video Solution

Reasoning:

Identity:\(\begin{align}\left[ \begin{array}{l}(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+\\2 a b+2 b c+2 c a\end{array} \right]\end{align}\)

Steps:

\(\begin{align}(\mathrm{i})\;\;(x+2 y+4 z)^{2}\end{align}\)

Identity:\(\begin{align}\left[ \begin{array}{l}(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+\\2 a b+2 b c+2 c a\end{array} \right]\end{align}\)

Taking \(\begin{align}a=x, b=2 y, c=4 z\end{align}\)

\[\begin{align}&{(x + 2y + 4z)^2}&\\&=\left[ \begin{array}{l}{x^2} + {(2y)^2} + {(4z)^2} + 2(x)(2y) + \\2(2y)(4z) + 2(4z)(x)\end{array} \right]\\ &= {x^2} + 4{y^2} + 16{z^2} + 4xy + 16yz + 8zx\end{align}\]

\(\begin{align}\text {(ii)}\left(2 x-y+z)^{2}\right.\end{align}\)

Identity: \(\begin{align}\left[ \begin{array}{l}(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+\\2 a b+2 b c+2 c a\end{array} \right]\end{align}\)

Taking \(\begin{align}a=2 x, b=-y, c=z\end{align}\)

\[\begin{align}&{(2x - y + z)^2}\\ &= \left[ {\begin{array}{*{20}{l}}\begin{array}{l}{(2x)^2} + {( - y)^2} + {(z)^2}\\ + 2(x)( - y) + \end{array}\\{2( - y)(z) + 2(z)(2x)}\end{array}} \right]\\&= 4{x^2} + {y^2} + {z^2} + 4xy + 2yz + 4zx\end{align}\]

\(\begin{align}\text { (iii) }\;\;(-2 x+3 y+2 z)^{2}\end{align}\)

Identity: \(\begin{align}\left[ \begin{array}{l}(a+b+c)^{2}=a^{2}+b^{2}+\\c^{2}+2 a b+2 b c+2 c a\end{array} \right]\end{align}\)

Taking \(\begin{align}a=2 x, b=3 y, c=2 z\end{align}\)

\[\begin{align}&{( - 2x + 3y + 2z)^2}\\ &= \left[ {\begin{array}{*{20}{l}}\begin{array}{l}{( - 2x)^2} + {(3y)^2} + {(2z)^2}\\ + 2( - 2x)(3y) + \end{array}\\{2(3y)(2z) + 2(2z)(2x)}\end{array}} \right]\\ &= 4{x^2} + 9{y^2} + 4{z^2} - 12xy + 12yz - 8zx\end{align}\]

\(\begin{align}(\text{iv})(3 a-7 b-c)^{2}\end{align}\)

Identity: \(\begin{align}\left[ \begin{array}{l}(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+\\2 a b+2 b c+2 c a\end{array} \right]\end{align}\)

Taking \(\begin{align}a=3 a, b=-7 b, c=-c\end{align}\)

\[\begin{align}&{(3a - 7b - c)^2}\\ &= \left[ \begin{array}{l}{(3a)^2} + {( - 7b)^2} + {( - c)^2}\\ + 2(3a)( - 7b)\\ + 2( - 7b)( - c) + 2( - c)(3a)\end{array} \right]\\ &= 9{a^2} + 49{b^2} + {c^2} - 42ab + 14bc - 6ca\end{align}\]

\(\begin{align}(\mathrm{v})\;\;(-2 x+5 y-3 z)^{2}\end{align}\)

Identity: \(\begin{align}\left[ \begin{array}{l}(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+\\2 a b+2 b c+2 c a\end{array} \right]\end{align}\)

Taking \(\begin{align}a=-2 x, b=5 y, c=-3 z\end{align}\)

\[\begin{align}&{( - 2x + 5y - 3z)^2}\\ &= \left[ \begin{array}{l}{( - 2x)^2} + {(5y)^2} + {( - 3z)^2} +\\ 2( - 2x)(5y)\\ + 2(5y)( - 3z) + 2( - 3z)( - 2x)\end{array} \right]\\& = \!4{x^2}\!\!+\! 25{y^2} + 9{z^2} \!\!-\! 20xy - 30yz \!+\!\! 12zx\end{align}\]

\(\begin{align}(\mathrm{vi})\;\;\left[\frac{1}{4} a-\frac{1}{2} b+1\right]^{2} \end{align}\)

Identity: \(\begin{align}\left[ \begin{array}{l}(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+\\2 a b+2 b c+2 c a\end{array} \right]\end{align}\)

Taking \(\begin{align}a=\frac{1}{4} a, b=\frac{-1}{2} b, c=1 \end{align}\)

\[\begin{align}&{\left( {\frac{1}{4}a - \frac{1}{2}b + 1} \right)^2}\\&= \left[ \begin{array}{l}{\left( {\frac{1}{4}a} \right)^2} + {\left( {\frac{{ - 1}}{2}b} \right)^2} + {(1)^2} + \\2\left( {\frac{1}{4}a} \right)\left( {\frac{{ - 1}}{2}b} \right) + \\2\left( {\frac{{ - 1}}{2}b} \right)(1) + 2(1)\left( {\frac{1}{4}a} \right)\end{array} \right]\\&= \frac{1}{{16}}{a^2} + \frac{1}{4}{b^2} + 1 - \frac{1}{4}ab - b + \frac{1}{2}a\end{align}\]

Chapter 2 Ex.2.5 Question 5

Factorise:

(i)\(\begin{align}\left[ \begin{array}{l} 4 x^{2}+9 y^{2}+16 z^{2}+\\12 x y-24 y z-16 x z\end{array} \right]\end{align}\)

(ii)\(\begin{align}\left[ \begin{array}{l}2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{2} x y+\\4 \sqrt{2} y z-8 x z\end{array} \right]\end{align}\)

Solution

Video Solution

Reasoning:

Identity:  \(\begin{align}\left[ \begin{array}{l}(a+b+c)^{2}=a^{2}+b^{2}+\\c^{2}+2 a b+2 b c+2 c a\end{array} \right]\end{align}\)

Steps:

(i) \(\begin{align}\left[ \begin{array}{l} 4 x^{2}+9 y^{2}+16 z^{2}+\\12 x y-24 y z-16 x z\end{array} \right]\end{align}\)

This can be re-written as:

\[\left[ \begin{array}{l}\left( {2{x^2}} \right) + {(3y)^2} + \left( { - 4{z^2}} \right) +\\ 2(2x)(3y) + 2(3y)( - 4z) +\\ 2( - 4z)(2x) + 2(2x)( - 4z)\end{array} \right]\]

Which is of the form: \(\begin{align}\left[ \begin{array}{l}a^{2}+b^{2}+c^{2}+2 a b+2 b c+\\2 c a=(a+b+c)^{2}\end{array} \right]\end{align}\)

Here \(\begin{align}a=2 x , b=3 y, c=-4 z\end{align}\)

Hence \(\begin{align}\left[ \begin{array}{l}4 x^{2}+9 y^{2}+16 z^{2}+12 x y-\\24 y z-16 x z=(2 x+3 y-4 z)^{2}\end{array} \right]\end{align}\)

(ii) \(\begin{align}\left[ \begin{array}{l}2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{2} x y+\\4 \sqrt{2} y z-8 x z\end{array} \right]\end{align}\)

This can be re-written as:

\[\left[ \begin{array}{l}{( - \sqrt 2 x)^2} + {(y)^2} + {(2\sqrt 2 z)^2} + \\2( - \sqrt 2 x)(y) + 2(y)(2\sqrt 2 z) +\\ 2(2\sqrt 2 z)( - \sqrt 2 x)\end{array} \right]\]

Which is of the form: \(\begin{align}\left[ \begin{array}{l}a^{2}+b^{2}+c^{2}+2 a b+2 b c+\\2 c a=(a+b+c)^{2}\end{array} \right]\end{align}\)

Here \(\begin{align}a=-2 \sqrt{2} x, b=y, c=2 \sqrt{2} z\end{align}\)

Hence  \(\begin{align}\left[ \begin{array}{l}2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{2} x y+4 \sqrt{2} y z-\\8 x z=(-\sqrt{2} x+y+2 \sqrt{2} z)^{2}\end{array} \right]\end{align}\)

Chapter 2 Ex.2.5 Question 6

 Write the following cubes in expanded form:

(i) \(\begin{align}(2 x+1)^{3} \end{align}\)

(ii) \(\begin{align}(2 a-3 b)^{3}\end{align}\)

(iii) \(\begin{align}\left(\frac{3}{2} x+1\right)^{3} \end{align}\)

(iv) \(\begin{align}\left(x-\frac{2}{3} y\right)^{3}\end{align}\)

   

Solution

Video Solution

Reasoning:

Identities: 

\[\begin{align} &(x+y)^{3}=x^{3}+y^{3}+3 x y(x+y) \\ &(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y) \end{align}\]

Steps:

(i) \(\begin{align}(2 x+1)^{3}\end{align}\)

Identity: \(\begin{align}(x+y)^{3}=x^{3}+y^{3}+3 x y(x+y)\end{align}\)

Here \(\begin{align}x=2 x\;,\; y=1\end{align}\)

\[\begin{align}&(2 x+1)^{3}\\&=(2 x)^{3}\!\!+\!(1)^{3}\!\!+\!3(2 x)\!(1)\!(2 x\!+\!1) \\ &=8 x^{3}+1+6 x(2 x+1) \\ &=8 x^{3}+1+12 x^{2}+6 x \\ &=8 x^{3}+12 x^{2}+6 x+1 \end{align}\]

(ii) \(\begin{align}\left(2 a-3 b)^{3}\right.\end{align}\)

Identity: \(\begin{align}(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)\end{align}\)

Here \(x = 2a, y = 3b\)

\[\begin{align}&(2 a-3 b)^{3} \\&\!=\!(2 a)^{3}\!\!-\!(3 b)^{3}\!-\!3(2 a)(3 b)(2 a\!-\!3 b) \\ &=8 a^{3}-27 b^{3}-18 a b(2 a-3 b) \\ &=8 a^{3}-27 b^{3}-36 a^{2} b+54 a b^{2} \\ &=8 a^{3}-36 a^{2} b+54 a b^{2}-27 b^{3} \end{align}\]

(iii) \(\begin{align}\left[\frac{3}{2} x+1\right]^{3} \end{align}\)

Identity: \(\begin{align}(x+y)^{3}=x^{3}+y^{3}+3 x y(x+y)\end{align}\)

Here \(\begin{align}x=\frac{3}{2}, y=1\end{align}\)

\[\begin{align}&\left(\frac{3}{2} x+1\right)^{3} \\&=\left(\frac{3}{2}x\!\!\right)^{3}+\!(1)^{3}\!+\!3\left(\frac{3}{2} x\right)\!\!(1)\!\!\left(\frac{3}{2} x\!+\!1\!\!\right) \\ &=\frac{27}{8} x^{3}+1+\frac{9}{2} x+\left(\frac{3}{2} x+1\right) \\ &=\frac{27}{8} x^{3}+1+\frac{27}{8} x^{2}+\frac{9}{2} x \\ &=\frac{27}{8} x^{3}+\frac{27}{4} x^{2}+\frac{9}{2} x+1 \end{align}\]

(iv) \(\begin{align}\left(x-\frac{2}{3} y\right)^{3} \end{align}\)

Identity: \(\begin{align}(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)\end{align}\)

Here \(\begin{align}x=x, y=\frac{2}{3} y\end{align}\)

\[\begin{align}&\left(x-\frac{2}{3} y\right)^{3} \\&=\!x^{3}\!-\left(\frac{2}{3} y\right)^{3}-3(x)\left(\frac{2}{3} y\right)\left(x-\frac{2}{3} y\right) \\ &=x^{3}-\frac{8}{27} y^{3}-2 x y\left(x-\frac{2}{3} y\right) \\ &=x^{3}-\frac{8}{27} y^{3}-2 x^{2} y+\frac{4}{3} x y^{2} \\ &=x^{3}-2 x^{2} y+\frac{4}{3} x y^{2}-\frac{8}{27} y^{3} \end{align}\]

Chapter 2 Ex.2.5 Question 7

Evaluate the following using suitable identities:

(i) \(\begin{align}(99)^{3}\end{align}\)

(ii) \(\begin{align}(102)^{3} \end{align}\)

(iii) \(\begin{align}(998)^{3} \end{align}\)

Solution

Video Solution

Reasoning:

Identities:

\[\begin{align} (x+y)^{3}=x^{3}+y^{3}+3 x y(x+y)\\{(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)}\end{align}\]

Steps:

(i)\(\begin{align}\;\;(99)^{3}=(100-1)^{3}\end{align}\)

Identity: \(\begin{align}(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)\end{align}\)

Take \(\begin{align}x=100, y=1\end{align}\)

\[\begin{align}(99)^{3} &\!=\!(100)^{3}\!\!-\!(1)^{3}\!\!-\!3(100)\!(1)\!(100\!-\!\!1) \\ &=1000000-1-300 \times 99 \\ &=999999-29700 \\ &=9,70,299 \end{align}\]

(ii)\(\begin{align}\;\;(102)^{3}=(100+2)^{3}\end{align}\)

Identity:  \(\begin{align}(x+y)^{3}=x^{3}+y^{3}+3 x y(x+y)\end{align}\)

Take \(\begin{align}x=100, y=2\end{align}\)

\[\begin{align}(102)^{3} &\!\!=\!\!(100)^{3}\!\!+\!(2)^{3}\!\!+\!3(100)\!(2)\!(100\!+\!\!2) \\ &=1000000+8+600 \times 102 \\ &=1000008+61200 \\ &=10,61,208 \end{align}\]

(iii)\(\begin{align}\;\;(998)^{3}=(1000-2)^{3}\end{align}\)

Identity: \(\begin{align}(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)\end{align}\)

Take \(\begin{align}x=1000, y=-2\end{align}\)

\[\begin{align}(998)^{3} &\!=\!(1000)^{3}\!\!\!-\!\!(2)^{3}\!\!\!-\!\!3(1000)\!(2)\!(1000\!-\!\!2\!) \\ &=1000000000-8-6000\,\times\,998 \\ &=999999992+5988000 \\ &=99,40,11,992 \end{align}\]

Chapter 2 Ex.2.5 Question 8

Factorise each of the following:

(i) \(\begin{align}8 a^{3}+b^{3}+12 a^{2} b+6 a b^{2}\end{align}\)

(ii) \(\begin{align}8 a^{3}-b^{3}-12 a^{2} b+6 a b^{2}\end{align}\)

(iii) \(\begin{align}27-125 a^{3}-135 a+225 a^{2}\end{align}\) 

(iv) \(\begin{align}64 a^{3}-27 b^{3}-144 a^{2} b+108 a b^{2}\end{align}\)

(v) \(\begin{align}27 p^{3}-\frac{1}{216}-\frac{9}{2} p^{2}+\frac{1}{4} p\end{align}\)

Solution

Video Solution

Reasoning:

Identities: 

\[\begin{align}&(x+y)^{3}=x^{3}+y^{3}+3 x y(x+y) \\ &{(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)}\end{align}\]

Steps:

(i) \(\begin{align}8 a^{3}+b^{3}+12 a^{2} b+6 a b^{2}\end{align}\)

This can be re-written as:

\[\begin{align}(2 a)^{3}+(b)^{3}+3(2 a)^{2}(b)+3(2 a)(b)^{2}\end{align}\]

Which is of the form:

\[\begin{align}x^{3}+y^{3}+3 x y(x+y)=(x+y)^{3}\end{align}\]

Hence,

\[\begin{align}8 a^{3}+b^{3}+12 a^{2} b+6 a b^{2}=(2 a+b)^{3}\end{align}\]

(ii) \(\begin{align}8 a^{3}-b^{3}-12 a^{2} b+6 a b^{2}\end{align}\)

This can be re-written as:

\[\begin{align}(2 a)^{3}-(b)^{3}-3(2 a)^{2}(b)+3(2 a)(b)^{2}\end{align}\]

Which is of the form: 

\[\begin{align}x^{3}-y^{3}-3 x^{2} y+3 x y^{2}=(x-y)^{3}\end{align}\]

Hence,  

\[\begin{align}8 a^{3}\!-\!b^{3}\!-\!12 a^{2} b\!+\!6 a b^{2}\!=\!(2 a\!-\!b)^{3}\end{align}\]

(iii)\(\begin{align}27-125 a^{3}-135 a+225 a^{2}\end{align}\)

 This can be re-witten as:

\[\begin{align}&(3)^{3}-(5 a)^{3}-3(3)^{2}(5 a)+3(3)(5 a)^{2} \\&(3)^{3}-(5 a)^{3}-3(3)(5 a)(3-5 a) & \end{align}\]

Which is of the form:

\[\begin{align} x^{3}-y^{3}-3 x y(x-y)=(x-y)^{3}\end{align}\]

Hence, 

\[\begin{align}27-125 a^{3}-135 a+225 a^{2}=(3-5 a)^{3}\end{align}\]

(iv) \(\begin{align} 64 a^{3}-27 b^{3}-144 a^{2} b+108 a b^{2}\end{align}\)

This can be re-written as:

\[\begin{align}&(4 a)^{3}-(3 b)^{3}-3(4 a)^{2}(3 b)+3(4 a)(3 b)^{2} \\ &(4 a)^{3}-(3 b)^{3}-3(4 a)(3 b)(4 a-3 b) \end{align}\]

Which is of the form: 

\[\begin{align}x^{3}-y^{3}-3 x y(x-y)=(x-y)^{3}\end{align}\]

Hence,

\[\begin{align}64 a^{3}\!-\!27 b^{3}\!-\!144 a^{2} b\!+\!108 a b^{2}\!=\!(4 a\!-\!3 b)^{3}\end{align}\]

(v) \(\begin{align}\;\;27 p^{3}-\frac{1}{216}-\frac{9}{2} p^{2}+\frac{1}{4} p\end{align}\)

This can be re-written as: 

\[\begin{align}&(3 p)^{3}-\left(\frac{1}{6}\right)^{3}-3(3 p)^{2} \frac{1}{6}+3(3 p)\left(\frac{1}{6}\right)^{2} \\ &(3 p)^{3}-\left(\frac{1}{6}\right)^{3}-3(3 p) \frac{1}{6}\left(3 p-\frac{1}{6}\right)\end{align}\]

Which is of the form:

\[\begin{align}a^{3}-b^{3}-3 a b(a-b)=(a-b)^{3}\end{align}\]

Hence,

\[\begin{align}27 p^{3}-\frac{1}{216}-\frac{9}{2} p^{2}+\frac{1}{4} p=\left(3 p-\frac{1}{6}\right)^{3}\end{align}\]

Chapter 2 Ex.2.5 Question 9

Verify:

(i) \(\begin{align}\left(x^{3}+y^{3}\right)=(x+y)\left(x^{2}-x y+y^{2}\right) \end{align}\)

(ii) \(\begin{align}\left(x^{3}-y^{3}\right)=(x-y)\left(x^{2}+x y+y^{2}\right)\end{align}\)

   

Solution

Video Solution
  

Steps:

(i) \(\begin{align}\left(x^{3}+y^{3}\right)=(x+y)\left(x^{2}-x y+y^{2}\right) \end{align}\)

\[\begin{align}&(x\!+\!y) \left(x^{2}\!-\!x y\!+\!y^{2}\right) \\&= x\left(x^{2}\!-\!x y\!+\!y^{2}\right)\!+\!y\left(x^{2}\!-\!x y\!+\!y^{2}\right) \\&\!=\! x^{3}\!-\!x^{2} y\!+\!x y^{2}\!+\!x^{2} y\!-\!x y^{2}\!+\!y^{3} \\&=\!x^{3}\!+\!y^{3} \end{align}\]

(ii) \(\begin{align}\left(x^{3}-y^{3}\right)=(x-y)\left(x^{2}+x y+y^{2}\right)\end{align}\)

\[\begin{align}&{(x\!-\!y)\left(x^{2}\!+\!x y\!+\!y^{2}\right)} \\ &\!=\!x\left(x^{2}\!+\!x y\!+\!y^{2}\right)\!-\!y\left(x^{2}\!+\!x y\!+\!y^{2}\right) \\ &=x^{3}\!+\!x^{2} y\!+\!x y^{2}\!-\!x^{2} y\!-\!1x y^{2}-\!y^{3} \\ &=x^{3}-y^{3} \end{align}\]

Chapter 2 Ex.2.5 Question 10

Factorise each of the following:

(i) \(\begin{align}27 y^{3}+125 z^{3}   \end{align}\)

(ii) \(\begin{align}64 m^{3}-343 n^{3}=(4 m)^{3}-(7 n)^{3} \end{align}\)

[Hint: See Question 9.]

 

Solution

  

Steps:

(i) \(\begin{align}27 y^{3}+125 z^{3}=(3 y)^{3}+(5 z)^{3}\end{align}\)

Using factorization: 

\[\begin{align}\left(x^{3}+y^{3}\right)=(x+y)\left(x^{2}-x y+y^{2}\right)\end{align}\]

We can write: 

\[\begin{align}&(3 y)^{3}+(5 z)^{3} \\&=(3 y+5 z)\left[(3 y)^{2}-(3 y)(5 z)+(5 z)^{2}\right]\end{align}\]

\[\begin{align}&27 y^{3}+125 z^{3}\\&=(3 y+5 z)\left(9 y^{2}-15 y z+25 z^{2}\right)\end{align}\]

(ii) \(\begin{align}64 m^{3}-343 n^{3}=(4 m)^{3}-(7 n)^{3}\end{align}\)

Using factorization:

\[\begin{align}\left(x^{3}-y^{3}\right)=(x-y)\left(x^{2}+x y+y^{2}\right)\end{align}\]

We can write: 

\[\begin{align}&{(4 m)^{3}-(7 n)^{3}}\\&={(4 m-7 n)\left[(4 m)^{2}+(4 m)(7 n)+(7 n)^{2}\right]} \end{align}\]

\[\begin{align}& {64 m^{3}-343 n^{3}}\\&={(4 m-7 n)\left(16 m^{2}+28 m n+49 n^{2}\right)}\end{align}\]

Chapter 2 Ex.2.5 Question 11

Factorise: \(\begin{align}27 x^{3}+y^{3}+z^{3}-9 x y z\end{align}\)

 

Solution

Video Solution
  

Reasoning:

Identity:

\[\begin{align}&x^{3}+y^{3}+z^{3}-3 x y z\\&\!=\!(x\!+\!y\!+\!z)\!\left(x^{2}\!+\!y^{2}\!+\!z^{2}\!-\!x y\!-\!y z\!-\!z x\right)\end{align}\]

Steps:

The above expression can be written as:

\[(3 x)^{3}+(y)^{3}+(z)^{2}-3(3 x)(y)(z)\]

By using the identity:

\[\begin{align}&x^{3}+y^{3}+z^{3}-3 x y z\\&=(x\!+\!y\!+\!z)\left(x^{2}\!+\!y^{2}\!+\!z^{2}\!-\!x y\!-\!y z\!-\!z x\right)\end{align}\]

We can write:

\[\begin{align} &{(3 x)^{3}+(y)^{3}+(z)^{2}-3(3 x)(y)(z)} \\ &=(3 x+y+z)\!\left[\begin{array}((3 x)^{2}+(y)^{2}+(z)^{2}-\\(3 x)(y)\!-\!y z\!-\!(z)(3 x)\end{array}\right]\end{align}\]

Hence,

\[\begin{align}&27 x^{3}+y^{3}+z^{3}-9 x y z\\&=(3 x+y+z)\left(\begin{array}9 x^{2}+y^{2}+z^{2}-\\3 x y-y z-3 z x\end{array}\right)\end{align}\]

Chapter 2 Ex.2.5 Question 12

Verify that:

\[\begin{align}&x^{3}+y^{3}+z^{3}-3 x y\\&=\frac{1}{2}(x+y+z)\left[\begin{array}((x-y)^{2}+(y-z)^{2}\\+(z-x)^{2}\end{array}\right]\end{align}\]

Solution

Video Solution

Reasoning:

Identity:

\[\begin{align}&x^{3}+y^{3}+z^{3}-3 x y z\\&=(x+y+z)\left(\begin{array}(x^{2}+y^{2}+z^{2}-\\x y-y z-z x\end{array}\right)\end{align}\]

Steps:

Taking RHS

\[\begin{align}&=\frac{1}{2}(x+y+z)\left[\begin{array}((x-y)^{2}+(y-z)^{2}\\+(z-x)^{2}\end{array}\right] \\ &=\frac{1}{2}(x+y+z)\left[\begin{array}((x^{2}-2 x y+y^{2})+\\(y^{2}-2 y z+z^{2})+\\(z^{2}-2 z x+x^{2})\end{array}\right]\\ &=\frac{1}{2}(x+y+z)\left[\begin{array}(2 x^{2}+2 y^{2}+2 z^{2}-\\2 x y-2 y z-2 z x\end{array}\right] \\ &=\frac{1}{2}(x+y+z)(2)\left[\begin{array}(x^{2}+y^{2}+z^{2}-\\x y-y z-z x\end{array}\right]\\&=\!\begin{Bmatrix}\!x\left[x^{2}+y^{2}+z^{2}-x y-y z-z x\right]\!+\!\!\!\\\!y\left[x^{2}+y^{2}+z^{2}-x y-y z-z x\right]\!+\!\!\!\\z\left[x^{2}+y^{2}+z^{2}-x y-y z-z x\right]\end{Bmatrix}\\ &=\left[\begin{array}(x^{3}+x y^{2}+x z^{2}-x^{2} y-x y z-\\x^{2} z+x^{2} y +y^{3}+y z^{2}-x y^{2}-\\y^{2} z-x y z+z x^{2}+y^{2} z+z^{3}-\\x y z-y z^{2}-x z^{2} \end{array}\right] \\ &=x^{3}+y^{3}+z^{3}-3 x y z=\mathrm{LHS}\end{align}\]

Chapter 2 Ex.2.5 Question 13

If  \(\begin{align}x+y+z=0,\end{align}\)

show that  \(\begin{align}x^{3}+y^{3}+z^{3}=3 x y z\end{align}\)

   

Solution

Video Solution
  

Reasoning:

 Identity:

\(\begin{align}&x^{3}+y^{3}+z^{3}-3 x y z\\&=\!(x\!+\!y\!+\!z)\left(x^{2}\!+\!y^{2}\!+\!z^{2}\!-\!x y\!-\!y z\!-\!zx\right)\end{align}\)

Steps:

By the identity:

\(\begin{align}&x^{3}+y^{3}+z^{3}-3 x y z\\&=\!(x\!+\!y\!+\!z)\left(x^{2}\!+\!y^{2}\!+\!z^{2}\!-\!x y\!-\!y z\!-\!zx\right)\end{align}\)

If  \(x + y + z = 0\)  then the entire \(RHS\) becomes \(0\) and hence the \(LHS\)

\(\begin{align}x^{3}+y^{3}+z^{3}-3 x y z=0\end{align}\)

Hence,

\[\begin{align}x^{3}+y^{3}+z^{3}=3 x y z\end{align}\]

Chapter 2 Ex.2.5 Question 14

Without actually calculating the cubes, find the value of each of the following:

(i) \(\begin{align}(-12)^{3}+(7)^{3}+(5)^{3}\end{align}\)

(ii) \(\begin{align}(28)^{3}+(-15)^{3}+(-13)^{3}\end{align}\)

 

Solution

Video Solution
  

Reasoning:

If \(\begin{align}x+y+z=0\end{align}\) then

\(\begin{align}x^{3}+y^{3}+z^{3}=3 x y z\end{align}\)

Steps:

(i) Let \(\begin{align}x&=-12, y=7, z=5 \end{align}\)

Then\(\begin{align}x+y+z=-12+7+5=0\end{align}\)

So by using the identity,

\[\begin{align}(-12)^{3}+(7)^{3}+(5)^{3} &=3(-12)(7)(5) \\ &=-1260 \end{align}\]

(ii)  Let \(x\) \(\begin{align}&=28, y=-15, z=-13 \end{align}\)

Then \(\begin{align}x+y+z=28-15-13=0 \end{align}\)

So by using the identity,

\[\begin{align}&(28)^{3}+(-15)^{3}+(-13)^{3} \\&=3(28)(-15)(-13) \\ &=16380 \end{align}\]

Chapter 2 Ex.2.5 Question 15

Give possible expressions for the length and breadth of each of the following rectangles, in which their areas are given:

(i) Area: \(25 a^{2}-35 a+12\)                                         

(ii) Area: \(35 y^{2}+13 y-12\)

 

Solution

Video Solution
  

Reasoning:

Area of rectangle \(=\) Length \(\times\) Breadth

What is known?

Area of rectangle

What is  unknown?

Length and breadth of the rectangle.

Steps:

Area of rectangle \(=\) Length \(\times\) Breadth

Hence, we shall factorise the given expression

\(25 a^{2}-35 a+12\)

Now taking  \(25 a^{2}-35 a+12\) 

find \(2\) numbers \(p, q\) such that:

(i) \(p+q=\)  co-efficient of \(a\)  

(ii) \(p q=\)  co-efficient of \(a^{2}\) and the constant term.

\(p+q=-35\)  (co-efficient of a ) 

\(p q=25 \times 12=300\)  (co-efficient of \(a^{2}\) and the constant term.) 

By trial and error method, we get

\(p=-20, q=-15\)

Now splitting the middle term of the given polynomial,

\[\begin{align}&25 a^{2}-35 a+12 \\&=25 a^{2}-20 a-15 a+12 \\ &=25 a^{2}-15 a-20 a+12 \\ &=5 a(5 a-3)-4(5 a-3) \\ &=(5 a-4)(5 a-3) \end{align}\]

\(\begin{align}\therefore 25 a^{2}-35 a+12 &=(5 a-4)(5 a-3)\end{align}\)

Length \(=\) \(5 a-3\)  Breadth\(=5 a-4\)

Length\(=5 a-4\) Breadth\(=5 a-3\)

What is known?

Area of rectangle.

What is unknown?

 Length and breadth of the rectangle.

Steps:

Area of rectangle \(=\) Length \(\times\) Breadth

Hence, we shall factorise the given expression:

\(35 y^{2}+13 y-12\)

Now taking \(35 y^{2}-13 y-12\) ,

find \(2\) numbers \(p, q\) such that:

i. \(p+q=\) co-efficient of \(y\)

ii. \(p q=\) co-efficient of \(y^{2}\)  and the constant term.

\( p+q= -13\) (co-efficient of  y )
 \({p q}=35 \times-12=-420\)(co-efficient of \(y^{2}\) and the constant term.)

By trial and error method, we get

 \( p = -28, q = -15.\)

Now splitting the middle term of the given polynomial,

\[\begin{align}& 35 y^{2}+13 y-12\\ &=35 y^{2}+28 y-15 y-12 \\ &=7 y(5 y+4)-3(5 y+4) \\ &=(5 y+4)(7 y-3)\end{align}\]

\(\begin{align} \therefore 35 y^{2}+13 y-12 &=(5 y+4)(7 y-3)\end{align}\)

 Length \(=5 y+4\)  Breadth \(=7 y-3\)

Length\(=7 y-3\) Breadth \(=5 y+4\)

Chapter 2 Ex.2.5 Question 16

What are the possible expressions for the dimensions of the cuboids whose volume are given below?

(i). Volume:  \(3 x^{2}-12 x\) 

(ii). Volume: \(12 k y^{2}+8 k y-20 k \)

 

Solution

  

Reasoning:

(i) Volume of a cubiod = length \(\times \) breadth \(\times \) height

What is known?

Volume of cubiod.

What is unknown?

Length, breadth and height of the cuboid.

Steps:

Volume of a cubiod = length \(\times \) breadth \(\times \) height

Hence we shall express the given polynomial as product of three expression.

\(3 x^{2}-12 x=3 x(x-4)\)

Length \(= 3\), breadth \(= x\), height \(= x-4\)

Length \(= 3\), breadth \(= x-4\), height \(= x\)

Length \(= x\), breadth \(= 3\), height \(= x-4\)

Length \(= x-4\), breadth \(= x-4\), height \(= 3\)

Length \(= x-4\), breadth \(= 3\), height \(= x\)

Length \(= x-4\), breadth \(= 3\), height\(= x\)

(ii)

What is known?

Volume of cubiod.

What is unknown?

Length, breadth and height of the cuboid.

Steps:     

Volume of a cubiod = length \(\times \) breadth \(\times \) height

Hence, we shall express the given polynomial as product of three factors

\(12 k y^{2}+8 k y-20 k=4 k\left(3 y^{2}+2 y-5\right)\)

Now taking \(3 y^{2}+2 y-5\),

find\( 2\)  numbers \(p, q\) such that: 

i.  \(p+q=\)co-efficient of  \(y \)

ii .\(p q=\)co-efficient of  \(y^{2}\) and the constant term.

\(p+q=2\)(co-efficient of y) 
\(p q=3 \times-5=-15\)(co-efficient of  \(y^{2}\) and the constant term.)

By trial and error method, we get

\(p = 5, q = -3.\)

Now splitting the middle term of the given polynomial,

\[\begin{align} 3 y^{2}+2 y-5 &=3 y^{2}+5 y-3 y-5 \\ &=3 y^{2}-3 y+5 y-5 \\ &=3 y(y-1)+5(y-1) \\ &=(3 y+5)(y-1)\end{align}\] 
Volume \(=4 k(y-1)(3 y+5) \)

Length \(=4 k\), breadth \( =y-1\), height \(=3 y+5\)

Length \(=4 k\), breadth \(=3 y+5\), height\( =y-1\)

Length \( =y-1\), breadth \(=4 k\), height \(=3 y+5\)

Length \( =y-1\), breadth \( =3y+5 ,\) height \(=4 k\)

Length \(=3 y+5\), breadth \(=4 k\), height \( =y-1\)

Length \(=3 y+5\), breadth\( =y-1\) , height \(=4 k\)

  
Download Cuemath NCERT App
Related Sections
Related Sections

Learn from the best math teachers and top your exams

Learn from the best

math teachers and top

your exams


Personalized Curriculum
Instant Doubts clarification
Cover latest CBSE Syllabus
Unlimited Mock & Practice tests
Covers CBSE, ICSE, IB curriculum

Instant doubt clearing with Cuemath Advanced Math Program
0