NCERT Solutions For Class 11 Maths Chapter 3 Exercise 3.2

Go back to  'Trigonometric Functions'

Chapter 3 Ex.3.2 Question 1

Find the values of trigonometric function \(\cos x = - \frac{1}{2}\), \(x \) lies in third quadrant.

Solution

As we know that

\[\begin{align}\sec x &= \frac{1}{{\cos x}}\\ &= \frac{1}{{\left( { - \frac{1}{2}} \right)}}\\ &= - 2\end{align}\]

Now, \({\sin ^2}x + {\cos ^2}x = 1\)

\[\begin{align}{\sin ^2}x &= 1 - {\cos ^2}x\\\sin x &= \pm \sqrt {1 - {{\cos }^2}x} \\ &= \pm \sqrt {1 - {{\left( { - \frac{1}{2}} \right)}^2}} \\& = \pm \sqrt {1 - \frac{1}{4}} \\ &= \pm \sqrt {\frac{3}{4}} \\ &= \pm \frac{{\sqrt 3 }}{2}\end{align}\]

Since, \(x\) lies in third quadrant, the value of \(\sin x\) will be negative.

Therefore,

\[\sin x = - \frac{\sqrt 3 }{2}\]

Now,

\[\begin{align}{\rm{cosec}}\;x &= \frac{1}{\sin x}\\ &= \frac{1}{\left( { - \frac{{\sqrt 3 }}{2}} \right)}\\ &= - \frac{2}{\sqrt 3 }\end{align}\]

Now,

\[\begin{align}\tan x &= \frac{\sin x}{\cos x}\\ &= \frac{{\left( { - \frac{1}{2}} \right)}}{{\left( { - \frac{{\sqrt 3 }}{2}} \right)}}\\& = \sqrt 3 \end{align}\]

Now,

\[\begin{align}\cot x &= \frac{1}{{\tan x}}\\& = \frac{1}{{\sqrt 3 }}\end{align}\]

Hence, \(\sin x = - \frac{{\sqrt 3 }}{2}\), \({\rm{cosec}}\;x = - \frac{2}{{\sqrt 3 }}\), \(\sec x = - 2\) , \(\tan x = \sqrt 3 \), and \(\cot x = \frac{1}{{\sqrt 3 }}\)

Chapter 3 Ex.3.2 Question 2

Find the values of trigonometric function \(\sin x = \frac{3}{5}\), \(x\) lies in second quadrant.

Solution

As we know that

\[\begin{align}{\rm{cosec}}\;x &= \frac{1}{\sin x}\\ &= \frac{1}{{\left( {\frac{3}{5}} \right)}}\\ &= \frac{5}{3}\end{align}\]

Now, \({\sin ^2}x + {\cos ^2}x = 1\)

\[\begin{align}{\cos ^2}x &= 1 - {\sin ^2}x\\\cos x &= \pm \sqrt {1 - {{\sin }^2}x} \\ &= \pm \sqrt {1 - {{\left( {\frac{3}{5}} \right)}^2}} \\ &= \pm \sqrt {1 - \frac{9}{{25}}} \\ &= \pm \sqrt {\frac{{16}}{{25}}} \\ &= \pm \frac{4}{5}\end{align}\]

Since, \(x\) lies in second quadrant, the value of \(\cos x\) will be negative.

Therefore,

\[\cos x = - \frac{4}{5}\]

Now,

\[\begin{align}\sec x &= \frac{1}{{\cos x}}\\ &= \frac{1}{{\left( { - \frac{4}{5}} \right)}}\\ &= - \frac{5}{4}\end{align}\]

Now,

\[\begin{align}\tan x &= \frac{{\sin x}}{{\cos x}}\\ &= \frac{{\left( {\frac{3}{5}} \right)}}{{\left( { - \frac{4}{5}} \right)}}\\ &= - \frac{3}{4}\end{align}\]

Now,

\[\begin{align}\cot x &= \frac{1}{\tan x}\\ &= \frac{1}{\left( { - \frac{3}{4}} \right)}\\ &= - \frac{4}{3}\end{align}\]

Hence, \(\rm{cosec}\;x = \frac{5}{3}\), \(\cos x = - \frac{4}{5}\), \(\sec x = - \frac{5}{4}\), \(\tan x = - \frac{3}{4}\), and \(\cot x = - \frac{4}{3}\)

Chapter 3 Ex.3.2 Question 3

Find the values of trigonometric function \(\cot x = \frac{3}{4}\), \(x\) lies in third quadrant.

Solution

As we know that

\[\begin{align}\tan x &= \frac{1}{{\cot x}}\\ &= \frac{1}{{\left( {\frac{3}{4}} \right)}}\\ &= \frac{4}{3}\end{align}\]

Now, \(1 + {\tan ^2}x = {\sec ^2}x\)

\[\begin{align}\sec x &= \pm \sqrt {1 + {{\tan }^2}x} \\ &= \pm \sqrt {1 + {{\left( {\frac{4}{3}} \right)}^2}} \\ &= \pm \sqrt {1 + \frac{{16}}{9}} \\ &= \pm \sqrt {\frac{{25}}{9}} \\ &= \pm \frac{5}{3}\end{align}\]

Since, \(x\) lies in third quadrant, the value of \(\sec x\) will be negative.

Therefore,

\[\sec x = - \frac{5}{3}\]

Now,

\[\begin{align}\cos x &= \frac{1}{\sec x}\\ &= \frac{1}{\left( { - \frac{5}{3}} \right)}\\& = - \frac{3}{5}\end{align}\]

Now,

\[\begin{align}\tan x &= \frac{{\sin x}}{{\cos x}}\\\sin x &= \tan x\cos x\\& = \left( {\frac{4}{3}} \right) \times \left( { - \frac{3}{5}} \right)\\ &= - \frac{4}{5}\end{align}\]

Now,

\[\begin{align}{\rm{cosec}}\;x &= \frac{1}{\sin x}\\ &= \frac{1}{\left( { - \frac{4}{5}} \right)}\\ &= - \frac{5}{4}\end{align}\]

Hence, \(\sin x = - \frac{4}{5}\), \({\rm{cosec}}\;x = - \frac{5}{4}\) , \(\cos x=-\frac{3}{5}\), \(\sec x=-\frac{5}{3}\), and \(\tan x=\frac{4}{3}\)

 

Chapter 3 Ex.3.2 Question 4

Find the values of trigonometric function \(\sec x = \frac{{13}}{5}\), \(x\) lies in fourth quadrant.

Solution

As we know that

\[\begin{align}\cos x &= \frac{1}{{\sec x}}\\ &= \frac{1}{{\left( {\frac{{13}}{5}} \right)}}\\ &= \frac{5}{{13}}\end{align}\]

Now, \({\sin ^2}x + {\cos ^2}x = 1\)

\[\begin{align}{\sin ^2}x &= 1 - {\cos ^2}x\\\sin x &= \pm \sqrt {1 - {{\cos }^2}x} \\ &= \pm \sqrt {1 - {{\left( {\frac{5}{13}} \right)}^2}} \\& = \pm \sqrt {1 - \frac{25}{169}} \\ &= \pm \sqrt {\frac{144}{169}} \\& = \pm \frac{12}{13}\end{align}\]

Since, \(x\) lies in fourth quadrant, the value of \(\sin x\) will be negative.

Therefore,

\[\sin x=-\frac{12}{13}\]

Now,

\[\begin{align}{\rm{cosec}}\;x &= \frac{1}{\sin x}\\ &= \frac{1}{\left( { - \frac{12}{13}} \right)}\\ &= - \frac{13}{12}\end{align}\]

Now,

\[\begin{align}\tan x &= \frac{\sin x}{\cos x}\\ &= \frac{\left( { - \frac{12}{13}} \right)}{\left( {\frac{5}{{13}}} \right)}\\ &= - \frac{12}{5}\end{align}\]

Now,

\[\begin{align}\cot x &= \frac{1}{\tan x}\\ &= \frac{1}{{\left( { - \frac{12}{5}} \right)}}\\ &= - \frac{5}{{12}} \end{align}\]

Hence, \(\sin x = - \frac{12}{13}\), \({\rm{cosec}}\;x = - \frac{13}{12}\), \(\cos x = \frac{5}{{13}}\), \(\tan x = - \frac{{12}}{5}\), and \(\cot x = - \frac{5}{12}\)

Chapter 3 Ex.3.2 Question 5

Find the values of trigonometric function \(\tan x = - \frac{5}{{12}}\), \(x\) lies in second quadrant.

Solution

As we know that

\[\begin{align}\cot x &= \frac{1}{{\tan x}}\\&= \frac{1}{{\left( { - \frac{5}{{12}}} \right)}}\\ &= - \frac{{12}}{5}\end{align}\]

Now, \(1 + {\tan ^2}x = {\sec ^2}x\)

\[\begin{align}\sec x &= \pm \sqrt {1 + {{\tan }^2}x} \\ &= \pm \sqrt {1 + {{\left( { - \frac{5}{{12}}} \right)}^2}} \\ &= \pm \sqrt {1 + \frac{25}{144}} \\ &= \pm \sqrt {\frac{{169}}{144}} \\ &= \pm \frac{13}{12}\end{align}\]

Since, \(x\) lies in second quadrant, the value of \(\sec x\) will be negative.

Therefore,

\[\sec x = - \frac{13}{12}\]

Now,

\[\begin{align}\cos x &= \frac{1}{\sec x}\\ &= \frac{1}{\left( { - \frac{13}{12}} \right)}\\ &= - \frac{12}{13}\end{align}\]

Now,

\[\begin{align}\tan x &= \frac{\sin x}{\cos x}\\\sin x &= \tan x\cos x\\ &= \left( { - \frac{5}{12}} \right) \times \left( { - \frac{12}{13}} \right)\\ &= \frac{5}{13}\end{align}\]

Now,

\[\begin{align}{\rm{cosec}}\;x &= \frac{1}{{\sin x}}\\ &= \frac{1}{{\left( {\frac{5}{{13}}} \right)}}\\& = \frac{{13}}{5}\end{align}\]

Hence, \(\sin x = \frac{5}{{13}}\), \({\rm{cosec}}\;x = \frac{{13}}{5}\), \(\cos x = - \frac{{12}}{{13}}\), \(\sec x = - \frac{{13}}{{12}}\), and \(\cot x = - \frac{{12}}{5}\)

Chapter 3 Ex.3.2 Question 6

Find the values of the trigonometric function \(\sin 765^\circ \)

Solution

It is known that the value of \(\sin x\) repeat after an interval of \(2n\) or \(360^\circ\).

Therefore,

\[\begin{align}\sin 765^\circ &= \sin \left( {2 \times 360^\circ + 45^\circ } \right)\\ &= \sin 45^\circ \\ &= \frac{1}{{\sqrt 2 }}\end{align}\]

Chapter 3 Ex.3.2 Question 7

Find the values of the trigonometric function \({\rm{cosec}}\left( { - 1410^\circ } \right)\)

Solution

It is known that the value of \(\sin x\) repeat after an interval of \(2n\) or \(360^\circ\).

Therefore,

\[\begin{align}{\rm{cosec}}\left( { - 1410^\circ } \right) &= {\rm{cosec}}\left( {4 \times 360^\circ - 1410^\circ } \right)\\& = {\rm{cosec}}\left( {1440^\circ - 1410^\circ } \right)\\& = {\rm{cosec}}30^\circ \\ &= 2\end{align}\]

Chapter 3 Ex.3.2 Question 8

Find the values of the trigonometric functions in \(\tan \frac{{19\pi }}{3}\)

Solution

It is known that the value of \(\tan x\) repeat after an interval of \(n\) or \(180^{\circ}\).

Therefore,

\[\begin{align}\tan \frac{{19\pi }}{3} &= \tan 6\frac{1}{3}\pi \\ &= \tan \left( {6\pi + \frac{1}{3}\pi } \right)\\ &= \tan \frac{\pi }{3}\\& = \tan 60^\circ \\& = \sqrt 3 \end{align}\]

Chapter 3 Ex.3.2 Question 9

Find the values of the trigonometric functions in \(\sin \left( { - \frac{{11\pi }}{3}} \right)\)

Solution

It is known that the value of \(\sin x\) repeat after an interval of \(2n\) or 360°.

Therefore,

\[\begin{align}\sin \left( { - \frac{11\pi }{3}} \right) &= \sin \left( {2 \times 2\pi - \frac{{11\pi }}{3}} \right)\\ &= \sin \frac{\pi }{3}\\ &= \sin 60^\circ \\ &= \frac{{\sqrt 3 }}{2}\end{align}\]

Chapter 3 Ex.3.2 Question 10

Find the values of the trigonometric functions in \(\cot \left( { - \frac{15\pi }{4}} \right)\)

Solution

It is known that the value of \(\cos x\) repeat after an interval of \(n\) or \(180^{\circ}.\)

Therefore,

\[\begin{align}\cot \left( { - \frac{15\pi }{4}} \right) &= \cot \left( {4\pi - \frac{15\pi}{4}} \right)\\ &= \cot \frac{\pi }{4}\\ &= \cot 45^\circ \\ &= 1\end{align}\]

  
Download Cuemath NCERT App
Related Sections
Related Sections

Learn from the best math teachers and top your exams

Learn from the best

math teachers and top

your exams


Personalized Curriculum
Instant Doubts clarification
Cover latest CBSE Syllabus
Unlimited Mock & Practice tests
Covers CBSE, ICSE, IB curriculum

Instant doubt clearing with Cuemath Advanced Math Program
0