NCERT Solutions For Class 11 Maths Chapter 3 Exercise 3.3

Go back to  'Trigonometric Functions'

Chapter 3 Ex.3.3 Question 1

Prove that:

\({\sin ^2}\frac{\pi }{6} + {\cos ^2}\frac{\pi }{3} - {\tan ^2}\frac{\pi }{4} = - \frac{1}{2}\)

Solution

\[\begin{align}LHS &= {\sin ^2}\frac{\pi }{6} + {\cos ^2}\frac{\pi }{3} - {\tan ^2}\frac{\pi }{4}\\&= {\left( {\frac{1}{2}} \right)^2} + {\left( {\frac{1}{2}} \right)^2} - {\left( 1 \right)^2}\\&= \frac{1}{4} + \frac{1}{4} - 1\\&= \frac{{1 + 1 - 4}}{4}\\&= \frac{{ - 2}}{4}\\&= - \frac{1}{2} = RHS\end{align}\]

Chapter 3 Ex.3.3 Question 2

Prove that:

\(2{\sin ^2}\frac{\pi }{6} + {\rm{cose}}{{\rm{c}}^2}\frac{{7\pi }}{6}{\cos ^2}\frac{\pi }{3} = \frac{3}{2}\)

Solution

\[\begin{align}LHS &= 2{\sin ^2}\frac{\pi }{6} + {\rm{cose}}{{\rm{c}}^2}\frac{{7\pi }}{6}{\cos ^2}\frac{\pi }{3}\\&= 2{\left( {\frac{1}{2}} \right)^2} + {\rm{cose}}{{\rm{c}}^2}\left( {\pi + \frac{\pi }{6}} \right) \times {\left( \frac{1}{2} \right)^2}\\&= 2 \times \frac{1}{4} + {\left( { - {\rm{cosec}}\frac{\pi }{6}} \right)^2} \times \frac{1}{4}\\&= \frac{1}{2} + {\left( { - 2} \right)^2} \times \frac{1}{4}\\&= \frac{1}{2} + 1\\&= \frac{{1 + 2}}{2}\\&= \frac{3}{2} = RHS\end{align}\]

Chapter 3 Ex.3.3 Question 3

Prove that:

\({\cot ^2}\frac{\pi }{6} + {\rm{cose}}{{\rm{c}}^2}\frac{{5\pi }}{6} + 3{\tan ^2}\frac{\pi }{6} = 6\)

Solution

\[\begin{align}LHS &= {\cot ^2}\frac{\pi }{6} + {\rm{cosec}}\frac{{5\pi }}{6} + 3{\tan ^2}\frac{\pi }{6}\\&= {\left( {\sqrt 3 } \right)^2} + {\rm{cosec}}\left( {\pi - \frac{\pi }{6}} \right) + 3{\left( {\frac{1}{{\sqrt 3 }}} \right)^2}\\&= 3 + {\rm{cosec}}\frac{\pi }{6} + 3 \times \frac{1}{3}\\&= 3 + 2 + 1\\&= 6 = RHS\end{align}\]

Chapter 3 Ex.3.3 Question 4

Prove that:

\(2{\sin ^2}\frac{{3\pi }}{4} + 2{\cos ^2}\frac{\pi }{4} + 2{\sec ^2}\frac{\pi }{3} = 10\)

Solution

\[\begin{align}LHS &= 2{\sin ^2}\frac{{3\pi }}{4} + 2{\cos ^2}\frac{\pi }{4} + 2{\sec ^2}\frac{\pi }{3}\\&= 2{\sin ^2}\left( {\pi - \frac{\pi }{4}} \right) + 2 \times {\left( {\frac{1}{{\sqrt 2 }}} \right)^2} + 2 \times {\left( 2 \right)^2}\\&= 2{\sin ^2}\frac{\pi }{4} + 2 \times \frac{1}{2} + 2 \times 4\\&= 2 \times {\left( {\frac{1}{{\sqrt 2 }}} \right)^2} + 1 + 8\\&= 1 + 9\\&= 10 = RHS \end{align}\]

Chapter 3 Ex.3.3 Question 5

Find the value of:

(i) \(\sin 75^\circ \)

(ii) \(\tan 15^\circ \)

Solution

(i) \(\sin 75^\circ \)

\[\begin{align} \sin 75{}^\circ&=\sin \left( 45{}^\circ +30{}^\circ \right) \\& =\sin 45{}^\circ \cos 30{}^\circ +\cos 45{}^\circ \sin 30{}^\circ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left[ \because \sin \left( x+y \right)=\sin x\cos y+\cos x\sin y \right] \\& =\left( \frac{1}{\sqrt{2}} \right)\times \left( \frac{\sqrt{3}}{2} \right)+\left( \frac{1}{\sqrt{2}} \right)\times \left( \frac{1}{2} \right) \\& =\frac{\sqrt{3}}{2\sqrt{2}}+\frac{1}{2\sqrt{2}} \\& =\frac{\sqrt{3}+1}{2\sqrt{2}}\end{align}\]

(ii) \(\tan 15^\circ \)

\[\begin{align} \tan 15{}^\circ &=\tan \left( 45{}^\circ -30{}^\circ \right) \\& =\frac{\tan 45{}^\circ -\tan 30{}^\circ }{1+\tan 45{}^\circ \tan 30{}^\circ }\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left[ \because \tan \left( x-y \right)=\frac{\tan x-\tan y}{1+\tan x\tan y} \right] \\& =\frac{1-\frac{1}{\sqrt{3}}}{1+1\times \frac{1}{\sqrt{3}}} \\& =\frac{\frac{\sqrt{3}-1}{\sqrt{3}}}{\frac{\sqrt{3}+1}{\sqrt{3}}} \\& =\frac{\sqrt{3}-1}{\sqrt{3}+1} \\& =\frac{\sqrt{3}-1}{\sqrt{3}+1}\times \frac{\sqrt{3}-1}{\sqrt{3}-1}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left[ \text{By}\ \text{rationalizing} \right] \\& =\frac{{{\left( \sqrt{3}-1 \right)}^{2}}}{3-1} \\& =\frac{3+1-2\sqrt{3}}{2} \\& =\frac{2\left( 2-\sqrt{3} \right)}{2} \\& =2-\sqrt{3}\end{align}\]

Chapter 3 Ex.3.3 Question 6

Prove the following:

\(\cos \left( {\frac{\pi }{4} - x} \right)\cos \left( {\frac{\pi }{4} - y} \right) - \sin \left( {\frac{\pi }{4} - x} \right)\sin \left( {\frac{\pi }{4} - y} \right) = \sin \left( {x + y} \right)\)

Solution

\[\begin{align}LHS &= \cos \left( {\frac{\pi }{4} - x} \right)\cos \left( {\frac{\pi }{4} - y} \right) - \sin \left( {\frac{\pi }{4} - x} \right)\sin \left( {\frac{\pi }{4} - y} \right)\\ &= \frac{1}{2}\left[ {2\cos \left( {\frac{\pi }{4} - x} \right)\cos \left( {\frac{\pi }{4} - y} \right)} \right] + \frac{1}{2}\left[ { - 2\sin \left( {\frac{\pi }{4} - x} \right)\sin \left( {\frac{\pi }{4} - y} \right)} \right]\\ & = \left( \begin{array}{l}\frac{1}{2}\left[ {\cos \left\{ {\left( {\frac{\pi }{4} - x} \right) + \left( {\frac{\pi }{4} - y} \right)} \right\} + \cos \left\{ {\left( {\frac{\pi }{4} - x} \right) - \left( {\frac{\pi }{4} - y} \right)} \right\}} \right]\\\qquad + \frac{1}{2}\left[ {\cos \left\{ {\left( {\frac{\pi }{4} - x} \right) + \left( {\frac{\pi }{4} - y} \right)} \right\} - \cos \left\{ {\left( {\frac{\pi }{4} - x} \right) - \left( {\frac{\pi }{4} - y} \right)} \right\}} \right] \end{array} \right)\\\\&\qquad \quad\left[ \begin{array}{l}2\cos A\cos B = \cos \left( {A + B} \right) + \cos \left( {A - B} \right)\\ - 2\sin A\sin B = \cos \left( {A + B} \right) - \cos \left( {A - B} \right)\end{array} \right]\\\\ &= \sin \left( {x + y} \right) = RHS\\ &= \left( \begin{array}{l}\frac{1}{2}\left[ {\cos \left\{ {\frac{\pi }{4} - x + \frac{\pi }{4} - y} \right\} + \cos \left\{ {\frac{\pi }{4} - x - \frac{\pi }{4} + y} \right\}} \right]\\\qquad + \frac{1}{2}\left[ {\cos \left\{ {\frac{\pi }{4} - x + \frac{\pi }{4} - y} \right\} - \cos \left\{ {\frac{\pi }{4} - x - \frac{\pi }{4} + y} \right\}} \right] \end{array} \right)\\ &= \frac{1}{2}\left[ {\cos \left\{ {\frac{\pi }{2} - \left( {x + y} \right)} \right\} + \cos \left\{ { - \left( {x - y} \right)} \right\} + \cos \left\{ {\frac{\pi }{2} - \left( {x + y} \right)} \right\} - \cos \left\{ { - \left( {x - y} \right)} \right\}} \right]\\& = \frac{1}{2}\left[ {2\cos \left\{ {\frac{\pi }{2} - \left( {x + y} \right)} \right\}} \right]\\& = \sin \left( {x + y} \right)\qquad \left[ {\cos \left( {\frac{\pi }{2} - A} \right) = \sin A} \right]\\ &= RHS\end{align}\]

Chapter 3 Ex.3.3 Question 7

Prove the following:

\(\begin{align}\frac{\tan \left( {\frac{\pi }{4} + x} \right)}{\tan \left( {\frac{\pi }{4} - x} \right)} = \left( {\frac{1 + \tan x}{1 - \tan x}} \right)^2\end{align}\)

Solution

\[\begin{align}LHS& = \frac{{\tan \left( {\frac{\pi }{4} + x} \right)}}{{\tan \left( {\frac{\pi }{4} - x} \right)}}\\ & = \frac{{\left( {\frac{{\tan \frac{\pi }{4} + \tan x}}{{1 - \tan \frac{\pi }{4}\tan x}}} \right)}}{{\left( {\frac{{\tan \frac{\pi }{4} - \tan x}}{{1 + \tan \frac{\pi }{4}\tan x}}} \right)}}\qquad\left[ \begin{array}{l} \because\tan \left( {A + B} \right) = \frac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\\\& \tan \left( {A - B} \right) = \frac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\end{array} \right]\\& = \frac{{\left( {\frac{{1 + \tan x}}{{1 - \tan x}}} \right)}}{{\left( {\frac{{1 - \tan x}}{{1 + \tan x}}} \right)}}\\ &= \left( {\frac{{1 + \tan x}}{{1 - \tan x}}} \right) \times \left( {\frac{{1 + \tan x}}{{1 - \tan x}}} \right)\\ &= {\left( {\frac{{1 + \tan x}}{{1 - \tan x}}} \right)^2}\\ &= RHS\end{align}\]

Chapter 3 Ex.3.3 Question 8

Prove the following:

\(\begin{align}\frac{\cos \left( {\pi + x} \right)\cos \left( { - x} \right)}{\sin \left( {\pi - x} \right)\cos \left( {\frac{\pi }{2} + x} \right)} = {\cot ^2}x \end{align}\)

Solution

\[\begin{align}LHS &= \frac{\cos \left( {\pi + x} \right)\cos \left( { - x} \right)}{\sin \left( {\pi - x} \right)\cos \left( {\frac{\pi }{2} + x} \right)}\\ &= \frac{\left( { - \cos x} \right) \times \left( {\cos x} \right)}{\left( {\sin x} \right) \times \left( { - \sin x} \right)} \qquad \left[ \begin{array}{l}\because\cos \left( {\pi + x} \right) = - \cos x\\ \Rightarrow \cos \left(- x\right) = \cos x\\ \Rightarrow \cos \left(\frac{\pi }{2} + x\right) = - \sin x\\ \Rightarrow \sin \left(\pi - x\right) = \sin x\end{array} \right]\\ &= \frac{ - {{\cos }^2}x}{ - {{\sin }^2}x}\\ &= {\left(\frac{{\cos x}}{{\sin x}} \right)^2}\\& = {\cot ^2}x \qquad \left[\cot x = \frac{{\cos x}}{{\sin x}} \right]\\ &= RHS\end{align}\]

Chapter 3 Ex.3.3 Question 9

Prove the following:

\(\cos \left( {\frac{{3\pi }}{2} + x} \right)\cos \left( {2\pi + x} \right)\left[ {\cot \left( {\frac{{3\pi }}{2} - x} \right) + \cot \left( {2\pi + x} \right)} \right] = 1\)

Solution

\[\begin{align}LHS &= \cos \left( {\frac{{3\pi }}{2} + x} \right)\cos \left( {2\pi + x} \right)\left[ {\cot \left( {\frac{{3\pi }}{2} - x} \right) + \cot \left( {2\pi + x} \right)} \right]\\ &= \cos \left\{ {\pi + \left( {\frac{\pi }{2} + x} \right)} \right\}\cos x\left[ {\cot \left\{ {\pi + \left( {\frac{\pi }{2} - x} \right)} \right\} + \cot x} \right] \\& \qquad \quad \left[ \begin{array}{l}\because\cos \left( {2n\pi + \theta } \right) = \cos \theta \\ \Rightarrow \cot \left( {2n\pi + \theta } \right) = \cot \theta \end{array} \right]\\ &= - \cos \left( {\frac{\pi }{2} + x} \right)\cos x\left[ {\cot \left( {\frac{\pi }{2} - x} \right) + \cot x} \right]\\& \qquad \quad \left[ \begin{array}{l}\because\cos \left( {\pi + \theta } \right) = - \cos \theta \\ \Rightarrow \cot \left( {\pi + \theta } \right) = \cot \theta \end{array} \right]\\& = - \left( { - \sin x} \right)\cos x\left[ {\tan x + \cot x} \right]\\& \quad\qquad\left[ \begin{array}{l}\because\cos \left( {\frac{\pi }{2} + \theta } \right) = - \sin \theta \\ \Rightarrow \cot \left( {2n\pi + \theta } \right) = \cos \theta \end{array} \right]\\ & = \sin x\cos x\left[ {\frac{{\sin x}}{{\cos x}} + \frac{{\cos x}}{{\sin x}}} \right]\\ &= {\sin ^2}x + {\cos ^2}x\\& = 1\\ &= RHS\end{align}\]

Chapter 3 Ex.3.3 Question 10

Prove the following:

\(\sin \left( {n + 1} \right)x\sin \left( {n + 2} \right)x + \cos \left( {n + 1} \right)x\cos \left( {n + 2} \right)x = \cos x\)

Solution

\[\begin{align} LHS&=\sin \left( n+1 \right)x\sin \left( n+2 \right)x+\cos \left( n+1 \right)x\cos \left( n+2 \right)x \\ & =\cos \left( n+2 \right)x.\cos \left( n+1 \right)x+\sin \left( n+2 \right)x.\sin \left( n+1 \right)x \\ & =\cos \left\{ \left( n+2 \right)x-\left( n+1 \right)x \right\}\\& \qquad \quad \left[ \because \cos \left( A-B \right)=\cos A\cos B+\sin A\sin B \right] \\ & =\cos \left\{ n+2-n-1 \right\}x \\ & =\cos x \\ & =RHS \end{align}\]

Chapter 3 Ex.3.3 Question 11

Prove the following:

\(\cos \left( {\frac{{3\pi }}{4} + x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right) = - \sqrt 2 \sin x\)

Solution

\[\begin{align} LHS&=\cos \left( \frac{3\pi }{4}+x \right)-\cos \left( \frac{3\pi }{4}-x \right) \\ & =-2\sin \left( \frac{\left( \frac{3\pi }{4}+x \right)+\left( \frac{3\pi }{4}-x \right)}{2} \right)\sin \left( \frac{\left( \frac{3\pi }{4}+x \right)-\left( \frac{3\pi }{4}-x \right)}{2} \right) \\ & \qquad \qquad \left[ \because \cos A-\cos B=-2\sin \left( \frac{A+B}{2} \right)\sin \left( \frac{A-B}{2} \right) \right] \\ & =-2\sin \left( \frac{\frac{3\pi }{4}+x+\frac{3\pi }{4}-x}{2} \right)\sin \left( \frac{\frac{3\pi }{4}+x-\frac{3\pi }{4}+x}{2} \right) \\ & =-2\sin \left( \frac{3\pi }{4} \right)\sin \left( \frac{2x}{2} \right) \\ & =-2\sin \left( \pi -\frac{\pi }{4} \right)\sin x \\ & =-2\sin \frac{\pi }{4}\sin x \qquad \qquad  \left[ \because \sin \left( \pi -\theta \right)=\sin \theta \right] \\ & =-2\times \frac{1}{\sqrt{2}}\times \sin x \\ & =-\sqrt{2}\sin x \\ & =RHS \end{align}\]

Chapter 3 Ex.3.3 Question 12

Prove the following:

\({\sin ^2}6x - {\sin ^2}4x = \sin 2x\sin 10x\)

Solution

\[\begin{align}LHS &= {\sin ^2}6x - {\sin ^2}4x\\ &= \left( {\sin 6x + \sin 4x} \right)\left( {\sin 6x - \sin 4x} \right)\\ &= \left[ {2\sin \left( {\frac{{6x + 4x}}{2}} \right)\cos \left( {\frac{{6x - 4x}}{2}} \right)} \right] \times \left[ {2\cos \left( {\frac{{6x + 4x}}{2}} \right)\sin \left( {\frac{{6x - 4x}}{2}} \right)} \right]\\&\qquad \qquad\left[ \begin{array}{l}\because\sin A + \sin B = 2\sin \left( {\frac{{A + B}}{2}} \right)\cos \left( {\frac{{A - B}}{2}} \right)\\\& \sin A - \sin B = 2\cos \left( {\frac{{A + B}}{2}} \right)\sin \left( {\frac{{A - B}}{2}} \right)\end{array} \right]\\ &= \left[ {2\sin 5x\cos x} \right] \times \left[ {2\cos 5x\sin x} \right]\\ &= \left[ {2\sin 5x\cos 5x} \right] \times \left[ {2\sin x\cos x} \right]\\ &= \left[ {\sin \left( {5x + 5x} \right) + \sin \left( {5x - 5x} \right)} \right] \times \left[ {\sin \left( {x + x} \right) + \sin \left( {x - x} \right)} \right]\\&\qquad \qquad\left[ {\because2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)} \right]\\ &= \left[ {\sin 10x + \sin 0} \right] \times \left[ {\sin 2x + \sin 0} \right]\\ &= \left[ {\sin 10x + 0} \right] \times \left[ {\sin 2x + 0} \right]\\ &= \sin 2x\sin 10x\\ &= RHS\end{align}\]

Chapter 3 Ex.3.3 Question 13

Prove the following:

\({\cos ^2}2x - {\cos ^2}6x = \sin 4x\sin 8x\)

Solution

\[\begin{align}LHS &= {\cos ^2}2x - {\cos ^2}6x\\ &= \left( {\cos 2x + \cos 6x} \right)\left( {\cos 2x - \cos 6x} \right)\qquad \left[ \because{{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)} \right]\\ &= \left[ {2\cos \left( {\frac{{2x + 6x}}{2}} \right)\cos \left( {\frac{{2x - 6x}}{2}} \right)} \right] \times \left[ { - 2\sin \left( {\frac{{2x + 6x}}{2}} \right)\sin \left( {\frac{{2x - 6x}}{2}} \right)} \right]\\& \qquad\qquad \left[ \begin{array}{l}\because\cos A + \cos B = 2\cos \left( {\frac{{A + B}}{2}} \right)\cos \left( {\frac{{A - B}}{2}} \right)\\\& \cos A - \cos B = - 2\sin \left( {\frac{{A + B}}{2}} \right)\sin \left( {\frac{{A - B}}{2}} \right) \end{array} \right]\\& = \left[ {2\cos 4x\cos \left( { - 2x} \right)} \right] \times \left[ { - 2\sin 4x\sin \left( { - 2x} \right)} \right]\\ &= \left[ {2\cos 4x\cos 2x} \right] \times \left[ { - 2\sin 4x\left( { - \sin 2x} \right)} \right]\\& \qquad\qquad\left[ \begin{array}{l}\because\cos \left( { - \theta } \right) = \cos \theta \\ \& \sin \left( { - \theta } \right) = - \sin \theta \end{array} \right]\\ &= \left[ {2\cos 4x\cos 2x} \right] \times \left[ {2\sin 4x\sin 2x} \right]\\ &= \left[ {2\cos 4x\sin 4x} \right] \times \left[ {2\cos 2x\sin 2x} \right]\\ &= \left[ {\sin \left( {4x + 4x} \right) - \sin \left( {4x - 4x} \right)} \right] \times \left[ {\sin \left( {2x + 2x} \right) - \sin \left( {2x - 2x} \right)} \right]\\& \qquad \qquad\left[ {\because 2\cos A\sin B = \sin \left( {A + B} \right) - \sin \left( {A - B} \right)} \right]\\ &= \left[ {\sin 8x - \sin 0} \right] \times \left[ {\sin 4x - \sin 0} \right]\\ &= \left[ {\sin 8x - 0} \right] \times \left[ {\sin 4x - 0} \right]\\ &= \sin 4x\sin 8x\\ &= RHS\end{align}\]

Chapter 3 Ex.3.3 Question 14

Prove the following:

\(\sin 2x + 2\sin 4x + \sin 6x = 4{\cos ^2}x\sin 4x\)

Solution

\[\begin{align} LHS&=\sin 2x+2\sin 4x+\sin 6x \\ & =\left[ \sin 2x+\sin 6x \right]+2\sin 4x \\ & =\left[ 2\sin \left( \frac{2x+6x}{2} \right)\cos \left( \frac{2x-6x}{2} \right) \right]+2\sin 4x\\&\qquad \quad \left[ \because \sin A+\sin B=2\sin \left( \frac{A+B}{2} \right)\cos \left( \frac{A-B}{2} \right) \right] \\ & =\left[ 2\sin 4x\cos \left( -2x \right) \right]+2\sin 4x \\ & =2\sin 4x\cos 2x+2\sin 4x \\ & =2\sin 4x\left( \cos 2x+1 \right) \\ & =2\sin 4x\left( 2{{\cos }^{2}}x-1+1 \right) \qquad \quad \left[ \because \cos 2x=2{{\cos }^{2}}x-1 \right] \\ & =2\sin 4x\left( 2{{\cos }^{2}}x \right) \\ & =4{{\cos }^{2}}x\sin 4x \\ & =RHS \end{align}\]

Chapter 3 Ex.3.3 Question 15

Prove the following:

\(\cot 4x\left( {\sin 5x + \sin 3x} \right) = \cot x\left( {\sin 5x - \sin 3x} \right)\)

Solution

\[\begin{align} LHS&=\cot 4x\left( \sin 5x+\sin 3x \right) \\ & =\cot 4x\left[ 2\sin \left( \frac{5x+3x}{2} \right)\cos \left( \frac{5x-3x}{2} \right) \right]\\&\qquad \quad  \left[ \because \sin A+\sin B=2\sin \left( \frac{A+B}{2} \right)\cos \left( \frac{A-B}{2} \right) \right] \\ & =\frac{\cos 4x}{\sin 4x}\left[ 2\sin 4x\cos x \right] \qquad \quad  \left[ \because \cos 2x=2{{\cos }^{2}}x-1 \right] \\ & =2\cos 4x\cos x \\ & =2\cos 4x\cos x\times \frac{\sin x}{\sin x} \\ & =\frac{\cos x}{\sin x}\times \left[ 2\cos 4x\sin x \right] \\ & =\cot x\left[ \sin \left( 4x+x \right)-\sin \left( 4x-x \right) \right]\\&\qquad \quad \left[ \because 2\cos A\sin B=\sin \left( A+B \right)-\sin \left( A-B \right) \right] \\ & =\cot x\left( \sin 5x-\sin 3x \right) \\ & =RHS \end{align}\]

Chapter 3 Ex.3.3 Question 16

Prove the following:

\(\begin{align}\frac{\cos 9x - \cos 5x}{\sin 17x - \sin 3x} = - \frac{\sin 2x}{\cos 10x} \end{align}\)

Solution

\[\begin{align}LHS &= \frac{{\cos 9x - \cos 5x}}{{\sin 17x - \sin 3x}}\\ &= \frac{{\left[ { - 2\sin \left( {\frac{{9x + 5x}}{2}} \right)\sin \left( {\frac{{9x - 5x}}{2}} \right)} \right]}}{{\left[ {2\cos \left( {\frac{{17x + 3x}}{2}} \right)\sin \left( {\frac{{17x - 3x}}{2}} \right)} \right]}}\\& \qquad \qquad \left[ \begin{array}{l} \because \cos A - \cos B = - 2\sin \left( {\frac{{A + B}}{2}} \right)\sin \left( {\frac{{A - B}}{2}} \right)\\ \& \sin A - \sin B = 2\cos \left( {\frac{{A + B}}{2}} \right)\sin \left( {\frac{{A - B}}{2}} \right) \end{array} \right]\\& = \frac{{\left[ { - 2\sin 7x\sin 2x} \right]}}{{\left[ {2\cos 10x\sin 7x} \right]}}\\ &= - \frac{{\sin 2x}}{{\cos 10x}}\\ &= RHS\end{align}\]

Chapter 3 Ex.3.3 Question 17

Prove the following:

\(\begin{align}\frac{\sin 5x + \sin 3x}{\cos 5x + \cos 3x} = \tan 4x \end{align}\)

Solution

\[\begin{align}LHS &= \frac{\sin 5x + \sin 3x}{\cos 5x + \cos 3x}\\& = \frac{{\left[ {2\sin \left( \frac{{5x + 3x}}{2} \right)\cos \left( {\frac{5x - 3x}{2}} \right)} \right]}}{{\left[ {2\cos \left( {\frac{5x + 3x}{2}} \right)\cos \left( {\frac{5x - 3x}{2}} \right)} \right]}}\\& \qquad \qquad \left[ \begin{array}{l} \because \sin A + \sin B = 2\sin \left( {\frac{A + B}{2}} \right)\cos \left( {\frac{A - B}{2}} \right)\\\& \cos A + \cos B = 2\cos \left( {\frac{A + B}{2}} \right)\cos \left( {\frac{A - B}{2}} \right)\end{array} \right]\\& = \frac{\sin 4x}{\cos 4x}\\ &= \tan 4x\\ &= RHS\end{align}\]

Chapter 3 Ex.3.3 Question 18

Prove the following:

\(\begin{align}\frac{\sin x - \sin y}{\cos x + \cos y} = \tan \frac{x - y}{2} \end{align}\)

Solution

\[\begin{align}LHS &= \frac{\sin x - \sin y}{\cos x + \cos y}\\ &= \frac{{\left[ {2\cos \left( {\frac{x + y}{2}} \right)\sin \left( {\frac{x - y}{2}} \right)} \right]}}{{\left[ {2\cos \left( {\frac{x + y}{2}} \right)\cos \left( {\frac{x - y}{2}} \right)} \right]}}\\& \qquad \qquad \left[ \begin{array}{l}\because \sin A - \sin B = 2\cos \left( {\frac{A + B}{2}} \right)\sin \left( {\frac{A - B}{2}} \right)\\\& \cos A + \cos B = 2\cos \left( {\frac{A + B}{2}} \right)\cos \left( {\frac{A - B}{2}} \right)\end{array} \right]\\ &= \frac{{\sin \left( {\frac{x - y}{2}} \right)}}{{\cos \left( {\frac{x - y}{2}} \right)}}\\ &= \tan \frac{x - y}{2}\\ &= RHS\end{align}\]

Chapter 3 Ex.3.3 Question 19

Prove the following:

\(\begin{align}\frac{\sin x + \sin 3x}{\cos x + \cos 3x} = \tan 2x \end{align}\)

Solution

\[\begin{align}LHS &= \frac{\sin x + \sin 3x}{\cos x + \cos 3x}\\& = \frac{{\left[ {2\sin \left( {\frac{x + 3x}{2}} \right)\cos \left( {\frac{x - 3x}{2}} \right)} \right]}}{{\left[ {2\cos \left( {\frac{x + 3x}{2}} \right)\cos \left( {\frac{x - 3x}{2}} \right)} \right]}}\\& \qquad \qquad \left[ \begin{array}{l}\because \sin A + \sin B = 2\sin \left( {\frac{A + B}{2}} \right)\cos \left( {\frac{A - B}{2}} \right)\\\& \cos A + \cos B = 2\cos \left( {\frac{A + B}{2}} \right)\cos \left( {\frac{A - B}{2}} \right)\end{array} \right]\\ &= \frac{\sin 2x}{\cos 2x}\\ &= \tan 2x\\& = RHS\end{align}\]

Chapter 3 Ex.3.3 Question 20

Prove the following:

\(\begin{align}\frac{\sin x - \sin 3x}{{{\sin }^2x - {\cos ^2}x}} = 2\sin x \end{align}\)

Solution

\[\begin{align}LHS &= \frac{\sin x - \sin 3x}{{{\sin }^2x - {\cos }^2}x}\\ &= \frac{{\left[ {2\cos \left( {\frac{x + 3x}{2}} \right)\sin \left( {\frac{x - 3x}{2}} \right)} \right]}}{{ - \left[ {{\cos }^2x - {\sin }^2}x \right]}}\\& \qquad \qquad \left[ \begin{array}{l}\because \sin A - \sin B = 2\cos \left( {\frac{A + B}{2}} \right)\sin \left( {\frac{A - B}{2}} \right)\\\& \cos A + \cos B = 2\cos \left( {\frac{A + B}{2}} \right)\cos \left( {\frac{A - B}{2}} \right) \end{array} \right]\\ &= \frac{2\cos 2x\sin \left(- x \right)}{- \cos 2x}\\ &= 2\sin x\\ &= RHS\end{align}\]

Chapter 3 Ex.3.3 Question 21

Prove the following:

\(\begin{align}\frac{\cos 4x + \cos 3x + \cos 2x}{\sin 4x + \sin 3x + \sin 2x} = \cot 3x \end{align}\)

Solution

\[\begin{align}LHS &= \frac{\cos 4x + \cos 3x + \cos 2x}{\sin 4x + \sin 3x + \sin 2x}\\ &= \frac{{\left[ \cos 4x + \cos 2x \right] + \cos 3x}}{{\left[ \sin 4x + \sin 2x \right] + \sin 3x}}\\ &= \frac{{\left[ {2\cos \left( \frac{{4x + 2x}}{2} \right)\cos \left(\frac{4x - 2x}{2} \right)} \right] + \cos 3x}}{{\left[ {2\sin \left(\frac{4x + 2x}{2} \right)\cos \left(\frac{4x - 2x}{2} \right)} \right] + \sin 3x}} \\& \qquad \qquad \left[ \begin{array}{l}\because\cos A + \cos B = 2\cos \left(\frac{A + B}{2} \right)\cos \left(\frac{A - B}{2} \right)\\\& \sin A + \sin B = 2\sin \left(\frac{A + B}{2}\right)\cos \left(\frac{A - B}{2} \right) \end{array} \right]\\& = \frac{2\cos 3x\cos x + \cos 3x}{2\sin 3x\cos x + \sin 3x}\\ &= \frac{\cos 3x\left( {2\cos x + 1} \right)}{{\sin 3x\left( {2\cos x + 1} \right)}}\\ &= \frac{\cos 3x}{\sin 3x}\\& = \cot 3x\\& = RHS \end{align}\]

Chapter 3 Ex.3.3 Question 22

Prove the following:

\(\cot x\cot 2x - \cot 2x\cot 3x - \cot 3x\cot x = 1\)

Solution

\[\begin{align} LHS&=\cot x\cot 2x-\cot 2x\cot 3x-\cot 3x\cot x \\ & =\cot x\cot 2x-\cot 3x\left( \cot 2x+\cot x \right) \\ & =\cot x\cot 2x-\cot \left( 2x+x \right)\left( \cot 2x+\cot x \right) \\ & =\cot x\cot 2x-\left[ \frac{\cot 2x\cot x-1}{\cot 2x+\cot x} \right]\left( \cot 2x+\cot x \right)\\&\qquad \qquad \left[ \because \cot \left( A+B \right)=\frac{\cot A\cot B-1}{\cot A+\cot B} \right] \\ & =\cot x\cot 2x-\left[ \cot 2x\cot x-1 \right] \\ & =\cot x\cot 2x-\cot x\cot 2x+1 \\ & =1 \\ & =RHS \end{align}\]

Chapter 3 Ex.3.3 Question 23

Prove the following:

\(\tan 4x = \frac{{4\tan x\left( {1 - {{\tan }^2}x} \right)}}{{1 - 6{{\tan }^2}x + {{\tan }^4}x}}\)

Solution

\[\begin{align} LHS&=\tan 4x \\ & =\tan 2\left( 2x \right) \\ & =\frac{2\tan 2x}{1-{{\tan }^{2}}2x}\\ & \qquad \qquad \left[ \because \tan 2A=\frac{2\tan A}{1-{{\tan }^{2}}A} \right] \\ & =\frac{2\left( \frac{2\tan x}{1-{{\tan }^{2}}x} \right)}{1-{{\left( \frac{2\tan x}{1-{{\tan }^{2}}x} \right)}^{2}}}\\ & \qquad \qquad \left[ \because \tan 2A=\frac{2\tan A}{1-{{\tan }^{2}}A} \right] \\ & =\frac{\left( \frac{4\tan x}{1-{{\tan }^{2}}x} \right)}{1-\left( \frac{4{{\tan }^{2}}x}{1+{{\tan }^{4}}x-2{{\tan }^{2}}x} \right)}\\ & \qquad \qquad  \left[ \because {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab \right] \\ & =\frac{\left( \frac{4\tan x}{1-{{\tan }^{2}}x} \right)}{\left( \frac{1+{{\tan }^{4}}x-2{{\tan }^{2}}x-4{{\tan }^{2}}x}{1+{{\tan }^{4}}x-2{{\tan }^{2}}x} \right)} \\ & =\left( \frac{4\tan x}{1-{{\tan }^{2}}x} \right)\times \left( \frac{1+{{\tan }^{4}}x-2{{\tan }^{2}}x}{1+{{\tan }^{4}}x-6{{\tan }^{2}}x} \right) \\ & =\frac{4\tan x{{\left( 1-{{\tan }^{2}}x \right)}^{2}}}{\left( 1-{{\tan }^{2}}x \right)\left( 1+{{\tan }^{4}}x-6{{\tan }^{2}}x \right)}\\ & \qquad \qquad  \left[ \because {{a}^{2}}+{{b}^{2}}-2ab={{\left( a-b \right)}^{2}} \right] \\ & =\frac{4\tan x\left( 1-{{\tan }^{2}}x \right)}{1-6{{\tan }^{2}}x+{{\tan }^{4}}x} \\ & =RHS \end{align}\]

Chapter 3 Ex.3.3 Question 24

Prove the following:

\(\cos 4x = 1 - 8{\sin ^2}x{\cos ^2}x\)

Solution

\[\begin{align}LHS & =\cos 4x \\ & =\cos 2\left( 2x \right) \\ & =1-2{{\sin }^{2}}2x \\& \qquad \quad \left[ \because \cos 2A=1-2{{\sin }^{2}}x \right] \\ & =1-2{{\left( 2\sin x\cos x \right)}^{2}}\\& \qquad \quad \left[ \because \sin 2A=2\sin x\cos x \right] \\ & =1-2\left( 4{{\sin }^{2}}x{{\cos }^{2}}x \right) \\ & =1-8{{\sin }^{2}}x{{\cos }^{2}}x \\ & =RHS \end{align}\]

Chapter 3 Ex.3.3 Question 25

Prove the following:

\(\cos 6x = 32{\cos ^6}x - 48{\cos ^4}x + 18{\cos ^2}x - 1\)

Solution

\[\begin{align} LHS &=\cos 6x \\ & =\cos 3\left( 2x \right) \\ & =4{{\cos }^{3}}2x-3\cos 2x \\& \qquad \qquad \left[ \because \cos 3A=4{{\cos }^{3}}x-3\cos x \right] \\ & =4{{\left( 2{{\cos }^{2}}x-1 \right)}^{3}}-3\left( 2{{\cos }^{2}}x-1 \right)\\& \qquad \qquad \left[ \because \cos 2A=2{{\cos }^{2}}x-1 \right] \\ & =4\left( 8{{\cos }^{6}}x-1-12{{\cos }^{4}}x+6{{\cos }^{2}}x \right)-6{{\cos }^{2}}x+3\\& \qquad \qquad \left[ \because {{\left( a-b \right)}^{3}}={{a}^{3}}-{{b}^{3}}-3{{a}^{2}}b+3a{{b}^{2}} \right] \\ & =32{{\cos }^{6}}x-4-48{{\cos }^{4}}x+24{{\cos }^{2}}x-6{{\cos }^{2}}x+3 \\ & =32{{\cos }^{6}}x-48{{\cos }^{4}}x+18{{\cos }^{2}}x-1 \\ & =RHS \end{align}\]

  
Download Cuemath NCERT App
Related Sections
Related Sections

Learn from the best math teachers and top your exams

Learn from the best

math teachers and top

your exams


Personalized Curriculum
Instant Doubts clarification
Cover latest CBSE Syllabus
Unlimited Mock & Practice tests
Covers CBSE, ICSE, IB curriculum

Instant doubt clearing with Cuemath Advanced Math Program
0