Excercise 4.3 Simple-Equations - NCERT Maths Class 7

Go back to  'Simple Equations'

Chapter 4 Ex.4.3 Question 1

Solve the following equations.

(a) \(\begin{align} 2y + \frac{5}{2} = \frac{{37}}{2}\end{align} \)

(b)  \(\begin{align} 5t + 28 = 10\end{align} \)

(c) \(\begin{align} \frac{a}{5} + 3 = 2\end{align} \)

(d) \(\begin{align} \frac{q}{4} + 7 = 5\end{align} \)

(e) \(\begin{align} \frac{5}{2}x = - 5\end{align} \)

(f) \(\begin{align} \frac{5}{2}x = \frac{{25}}{4}\end{align} \)

(g) \(\begin{align} 7m + \frac{{19}}{2} = 13\end{align} \)

(h)  \(\begin{align} 6z + 10 = - 2\end{align} \)

(i) \(\begin{align} \frac{{3l}}{2} = \frac{2}{3}\end{align} \)

(j) \(\begin{align} \frac{{2b}}{3} - 5 = 3\end{align} \)

Solution

Video Solution

What is Known?

Equations.

What is unknown?

Solution of the equations (The value of the variable).

Reasoning:

To solve these equations, first transpose the variables on the one side and constants on the other side, then simplify them and get the value of variable.

Steps:

(a) \(\begin{align} 2y + \frac{5}{2} = \frac{{37}}{2}\end{align} \)

Transposing \(\begin{align} \frac{5}{2}\end{align} \) to R.H.S we get,

\[\begin{align}2y &= \frac{{37}}{2} - \frac{5}{2}\\2y &= \frac{{32}}{2} = 16\\y &= \frac{{16}}{2} = 8\end{align}\]

(b)  \(\begin{align} 5t + 28 = 10\end{align} \)

Transposing \(28\) to R.H.S we get,

\[\begin{align}5t &= 10 - 28\\5t &= - 18\\t &= \frac{{ - 18}}{5}\end{align}\]

(c) \(\begin{align} \frac{a}{5} + 3 = 2\end{align} \)

Transposing \(3\) to R.H.S we get,

\[\begin{align}\frac{a}{5} &= 2 - 3\\\frac{a}{5} &= - 1\\a &= - 5\end{align}\]

(d) \(\begin{align} \frac{q}{4} + 7 = 5\end{align} \)

Transposing \(7\) to R.H.S we get,

\[\begin{align}\frac{q}{4} &= 5 - 7\\\frac{q}{4} &= - 2\\q &= - 8\end{align}\]

(e) \(\begin{align} \frac{5}{2}x = - 5\end{align} \)

\[\begin{align}5x &= - 5 \times 2\\x &= \frac{{ - 10}}{5}\\x &= - 2\end{align}\]

(f) \(\begin{align} \frac{5}{2}x = \frac{{25}}{4}\end{align} \)

\[\begin{align}5x &= \frac{{25}}{4} \times 2\\x &= \frac{{25}}{{2 \times 5}}\\x &= \frac{5}{2}\end{align}\]

(g)  \(\begin{align} 7m + \frac{{19}}{2} = 13\end{align} \)

Transposing \(\begin{align} \frac{{19}}{2}\end{align} \) to the R.H.S.

\[\begin{align}7m&= 13 - \frac{{19}}{2}\\7m &= \frac{{26 - 19}}{2}\\7m &= \frac{7}{2}\\m &= \frac{7}{{2 \times 7}}\\m &= \frac{1}{2}\end{align}\]

(h)  \(\begin{align} 6z + 10 = - 2\end{align} \)

Transposing \(10\) to the R.H.S.

\[\begin{align}6z &= - 2 - 10\\z &= \frac{{ - 12}}{6}\\z& = - 2\end{align}\]

(i) \(\begin{align} \frac{{3l}}{2} = \frac{2}{3}\end{align} \)

\[\begin{align}l &= \frac{2}{3} \times \frac{2}{3}\\l &= \frac{4}{9}\end{align}\]

(j) \(\begin{align} \frac{{2b}}{3} - 5 = 3\end{align} \)

\[\begin{align}\frac{{2b}}{3} &= 3 + 5\\\frac{{2b}}{3} &= 8\\b &= 8 \times \frac{3}{2}\\b &= 12\end{align}\]

Chapter 4 Ex.4.3 Question 2

Solve the following equations.

(a) \(2(x + 4) = 12\)

(b) \(3(n\, – 5) = 21\)

(c) \(\begin{align}3\left( {n-5} \right) = - 21\end{align} \)

(d) \(\begin{align}- 4\left( {2 + x} \right) = 8\end{align} \)

(e) \(4(2 \,– x) = 8\)

Solution

Video Solution

What is Known?

Equations.

What is unknown?

The value of the variable.

Reasoning:

To solve these equations, transpose the variables on the one side and constants on the other side, and simplify them and get the value of variable.

Steps:

(a) \(2(x + 4) = 12\)

\[\begin{align} 2(x + 4) &= 12\\2x + 8 &= 12\\2x &= 12 – 8\\2x &= 4\\x& = \frac{4}{2}\; \text{or} \;x = 2\end{align} \]

(b) \(3(n \,– 5) = 21\)

\[\begin{align}3(n – 5) &= 21\\3n – 15 &= 21\\3n &= 21 + 15\\3n &= 36 \\ n &= \frac{{36}}{3} \,\text{or}\, n = 12\end{align} \]

(c) \(\begin{align} 3\left( {n-{\rm{ }}5} \right) = - 21\end{align} \)

\[\begin{align} 3\left( {n-{\rm{ }}5} \right) &= - 21 \\3n \,– 15 &=\, –21\\3n &=\, –21 + 15\\3n& = \,–6\\ n &= \frac{{ - 6}}{3}\,\text{or}\, n = \,–2\end{align} \]

(d) \(\begin{align}- 4\left( {2 + x} \right) = 8\end{align} \)

\[\begin{align} - 4\left( {2 + x} \right) &= 8\\– 8 \,– 4x &= 8\\–4x &= 8 + 8\\–4x &= 16\\x = \frac{{ - 16}}{4}& = \,–\,4\end{align} \]

(e)  \(4(2 \,– x) = 8\)

\[\begin{align}4(2 – x) &= 8\\8 – 4x &= 8 \\– 4x &= 8\,– 8 = 0 \,\text{or} \,x = 0\end{align}\]

Chapter 4 Ex.4.3 Question 3

Solve the following equations.

(a) \(4 = 5(p \,– 2) \)

(b) \(– 4 = 5(p\, – 2)\)

(c) \(16 = 4 + 3(t + 2)\)

(d) \(4 + 5(p - 1) =34\)

(e) \(0 = 16 + 4(m \,– 6)\)

Solution

Video Solution

What is Known?

Equations.

What is unknown?

The value of the variable.

Reasoning:

Transpose the variables on the one side and constants on the other side, then simplify them and get the value of variable.

Steps:

(a) \(4 = 5(p\, – 2) \)

\[\begin{align}4 &= 5(p\, – 2)\\4& = 5p \,– 10\\5p &= 4 + 10\end{align}\]

Therefore, \(\begin{align} p = \frac{{14}}{5}\end{align} \)

(b) \(– 4 = 5(p \,– 2)\)

\[\begin{align}– 4&= 5(p \,– 2)\\– 4 &= 5p \,– 10\\– 4 + 10 &= 5p\\6&= 5p\end{align}\]

Therefore, \(\begin{align} p = \frac{6}{5}\end{align} \)

(c) \(16 = 4 + 3(t + 2)\)

\[\begin{align}16 &= 4 + 3(t + 2)\\16 &= 4 + 3t + 6\\16 \,– 10 &= 3t\\6 &=3t\\ t &= \frac{6}{3} = 2\end{align}\]

(d) \(4 + 5(p - 1) =34\)

\[\begin{align} 4 + 5(p - 1) &=34\\4 + 5p \,– 5 &= 34\\5p \,– 1 &= 34\\5p &= 35\\p &= \frac{{35}}{5}\\p &= 7\end{align} \]

(e) \(0 = 16 + 4(m \,– 6)\)

\[\begin{align}0 &= 16 + 4(m \,– 6)\\0 &= 16 + 4m \,– 24\\8 &= 4m\\ m &= \frac{8}{4}\\m &= 2\end{align} \]

Chapter 4 Ex.4.3 Question 4

(a) Construct \(3\) equations starting with \(x = 2\)

(b) Construct \(3\) equations starting with \(x=-2\)

Solution

Video Solution

What is Known?

Value of the variables; \(x = 2\) and \(x=-2\)

What is unknown?

\(3\) equations starting with \(x = 2\) and \(3\) equations starting with \(x = 2\)

Reasoning:

You can get the equation by adding, multiplying or subtracting the same value on both sides of the equation.

Steps:

(a) \(3\) equations starting with \(x = 2\)

(i) \(x = 2\)

Multiplying both sides by \(10\),

\(10x = 20\)

Adding \(2\) to both sides ,

\[\begin{align}10x + 2 &= 20 + 2\\10x + 2 &= 22\end{align}\]

(ii) \(x = 2\)

multiplying both sides by \(5\),

\(5x = 10\)

subtracting \(3\) to both sides,

\[\begin{align}5x - 3 &= 10 - 3\\5x - 3 &= 7\end{align}\]

(iii) \(x = 2\)

multiplying both sides by \(2\),

\(2x = 4\)

subtracting \(3\) to both sides,

\[\begin{align}2x - 3 &= 4 - 3\\2x - 3 &= 1\end{align}\]

(b) \(3\) equations starting with \(x = -2\)

(i) \(x=-2\)

Multiplying both sides by \(3\),

\(3x = - 6\)

(ii) \(x=-2\)

Multiplying both sides by \(3\),

\(3x = - 6\)

Adding \(7 \) to both sides we get.

\[\begin{align}3x + 7 &= - 6 + 7\\ 3x + 7 &= 1\end{align}\]

(iii) \(x=-2\)

Multiplying both sides by \(3\),

\(3x = - 6\)

Adding \(10\) to both sides, we get.

\[\begin{align}3x + 10 &= - 6 + 10\\ 3x + 10& = 4\end{align}\]

  
Download Cuemath NCERT App
Related Sections
Related Sections

Learn from the best math teachers and top your exams

Learn from the best

math teachers and top

your exams


Personalized Curriculum
Instant Doubts clarification
Cover latest CBSE Syllabus
Unlimited Mock & Practice tests
Covers CBSE, ICSE, IB curriculum

Instant doubt clearing with Cuemath Advanced Math Program
0