NCERT Solutions For Class 12 Maths Chapter 4 Exercise 4.6

Go back to  'Determinants'

Chapter 4 Ex.4.6 Question 1

Examine the consistency of the system of equations:

\[\begin{align}x + 2y &= 2\\2x + 3y &= 3\end{align}\]

Solution

The given system of equations is: \(\begin{align}x + 2y = 2\\2x + 3y = 3\end{align}\)

The given system of equations can be written in the form of \(AX = B\), where

\(A = \left( {\begin{array}{*{20}{c}}1&2\\2&3\end{array}} \right),X = \left[ {\begin{array}{*{20}{c}}x\\y\end{array}} \right]\) and \(B = \left[ {\begin{array}{*{20}{c}}2\\3\end{array}} \right]\)

Hence,

\[\begin{align}\left| A \right|& = 1\left( 3 \right) - 2\left( 2 \right)\\ &= 3 - 4\\ &= - 1\\ &\ne 0\end{align}\]

So, \(A\) is non-singular.

Therefore, \({A^{ - 1}}\) exists.

Thus, the given system of equations is consistent.

Chapter 4 Ex.4.6 Question 2

Examine the consistency of the system of equations:

\[\begin{align}2x - y = 5\\x + y = 4\end{align}\]

Solution

The given system of equations is: \(\begin{align}2x - y &= 5\\x + y &= 4\end{align}\)

The given system of equations can be written in the form of \(AX = B\), where

\(A = \left( {\begin{array}{*{20}{c}}2&{ - 1}\\1&1\end{array}} \right),X = \left[ {\begin{array}{*{20}{c}}x\\y\end{array}} \right]\) and \(B = \left[ {\begin{array}{*{20}{c}}5\\4\end{array}} \right]\)

Hence,

\[\begin{align}\left| A \right| &= 2\left( 1 \right) - 1\left( { - 1} \right)\\& = 2 + 1\\ &= 3\\ &\ne 0\end{align}\]

So, \(A\) is non-singular.

Therefore, \({A^{ - 1}}\) exists.

Hence, the given system of equations is consistent.

Chapter 4 Ex.4.6 Question 3

Examine the consistency of the system of equations:

\(\begin{align}x + 3y = 5\\2x + 6y = 8\end{align}\)

Solution

The given system of equations is: \(\begin{align}&x + 3y = 5\\&2x + 6y = 8\end{align}\)

The given system of equations can be written in the form of \(AX = B\), where

\(A = \left( {\begin{array}{*{20}{c}}1&3\\2&6\end{array}} \right),X = \left[ {\begin{array}{*{20}{c}}x\\y\end{array}} \right]\) and \(B = \left[ {\begin{array}{*{20}{c}}5\\8\end{array}} \right]\)

Hence,

\[\begin{align}\left| A \right|& = 1\left( 6 \right) - 3\left( 2 \right)\\ &= 6 - 6\\& = 0\end{align}\]

So, \(A\) is a singular matrix.

Now,

\(\left( {adjA} \right) = \left( {\begin{array}{*{20}{c}}6&{ - 3}\\{ - 2}&1\end{array}} \right)\)

Therefore,

\[\begin{align}\left( {adjA} \right)B &= \left( {\begin{array}{*{20}{c}}6&{ - 5}\\{ - 2}&1\end{array}} \right)\left[ {\begin{array}{*{20}{c}}5\\8\end{array}} \right]\\& = \left( {\begin{array}{*{20}{c}}{30 - 24}\\{ - 10 + 8}\end{array}} \right)\\& = \left[ {\begin{array}{*{20}{c}}6\\{ - 2}\end{array}} \right]\\& \ne 0\end{align}\]

Thus, the solution of the given system of equations does not exist.

Hence, the system of equations is inconsistent.

Chapter 4 Ex.4.6 Question 4

Examine the consistency of the system of equations:

\(\begin{align}x + y + z &= 1\\2x + 3y + 2z &= 2\\ax + ay + 2az &= 4\end{align}\)

Solution

The given system of equations is: \(\begin{align}&x + y + z = 1\\&2x + 3y + 2z = 2\\&ax + ay + 2az = 4\end{align}\)

The given system of equations can be written in the form of \(AX = B\), where

\(A = \left( {\begin{array}{*{20}{c}}1&1&1\\2&3&2\\a&a&{2a}\end{array}} \right),X = \left[ {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right]\) and \(B = \left[ {\begin{array}{*{20}{c}}1\\2\\4\end{array}} \right]\)

Hence,

\[\begin{align}\left| A \right|& = 1\left( {6a - 2a} \right) - 1\left( {4a - 2a} \right) + 1\left( {2a - 3a} \right)\\ &= 4a - 2a - a\\& = 4a - 3a\\ &= a \ne 0\end{align}\]

So,\(A\) is non-singular.

Therefore, \({A^{ - 1}}\) exists.

Thus, the given system of equations is consistent.

Chapter 4 Ex.4.6 Question 5

Examine the consistency of the system of equations:

\(\begin{align}&3x - y - 2z = 2\\&2y - z = - 1\\&3x - 5y = 3\end{align}\)

Solution

The given system of equations is: \(\begin{align}&3x - y - 2z = 2\\&2y - z = - 1\\&3x - 5y = 3\end{align}\)

The given system of equations can be written in the form of \(AX = B\), where

\(A = \left( {\begin{array}{*{20}{c}}3&{ - 1}&{ - 2}\\0&2&{ - 1}\\3&{ - 5}&0\end{array}} \right),X = \left[ {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right]\) and \(B = \left[ {\begin{array}{*{20}{c}}2\\{ - 1}\\3\end{array}} \right]\)

Hence,

\[\begin{align}\left| A \right| &= 3\left( {0 - 5} \right) - 0 + 3\left( {1 + 4} \right)\\& = - 15 + 15\\& = 0\end{align}\]

So, \(A\) is a singular matrix.

Now,

\[\left( {adjA} \right) = \left( {\begin{array}{*{20}{c}}{ - 5}&{10}&5\\{ - 3}&6&3\\{ - 6}&{12}&6\end{array}} \right)\]

Therefore,

\[\begin{align}\left( {adjA} \right)B &= \left( {\begin{array}{*{20}{c}}{ - 5}&{10}&5\\{ - 3}&6&3\\{ - 6}&{12}&6\end{array}} \right)\left[ {\begin{array}{*{20}{c}}2\\{ - 1}\\3\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}{ - 10 - 10 + 15}\\{ - 6 - 6 + 9}\\{ - 12 - 12 + 18}\end{array}} \right]\\& = \left[ {\begin{array}{*{20}{c}}{ - 5}\\{ - 3}\\{ - 6}\end{array}} \right]\\& \ne 0\end{align}\]

Thus, the solution of the given system of equations does not exist.

Hence, the system of equations is inconsistent.

Chapter 4 Ex.4.6 Question 6

Examine the consistency of the system of equations:

\(\begin{align}&5x - y + 4z = 5\\&2x + 3y + 5z = 2\\&5x - 2y + 6z = - 1\end{align}\)

Solution

The given system of equations is: \(\begin{align}&5x - y + 4z = 5\\&2x + 3y + 5z = 2\\&5x - 2y + 6z = - 1\end{align}\)

The given system of equations can be written in the form of \(AX = B\), where

\(A = \left( {\begin{array}{*{20}{c}}5&{ - 1}&4\\2&3&5\\5&{ - 2}&6\end{array}} \right),\,X = \left[ {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right]\,\,{\rm{and}}\,\,B = \left[ {\begin{array}{*{20}{c}}5\\2\\{ - 1}\end{array}} \right]\)

Hence,

\[\begin{align}\left| A \right| &= 5\left( {18 + 10} \right) + 1\left( {12 - 25} \right) + 4\left( { - 4 - 15} \right)\\ &= 5\left( {28} \right) + 1\left( { - 13} \right) + 4\left( { - 19} \right)\\ &= 140 - 13 - 76\\& = 51 \ne 0\end{align}\]

So, \(A\) is nonsingular.

Therefore, \({A^{ - 1}}\) exists.

Hence, the given system of equations is consistent.

Chapter 4 Ex.4.6 Question 7

Solve system of linear equations, using matrix method.

\(\begin{align}5x + 2y &= 4\\7x + 3y &= 5\end{align}\)

Solution

The given system of equations is: \(\begin{align}5x + 2y &= 4\\7x + 3y& = 5\end{align}\)

The given system of equations can be written in the form of \(AX = B\), where

\(A = \left( {\begin{array}{*{20}{c}}5&2\\7&3\end{array}} \right),X = \left[ {\begin{array}{*{20}{c}}x\\y\end{array}} \right]\) and \(B = \left[ {\begin{array}{*{20}{c}}4\\5\end{array}} \right]\)

Hence,

\[\begin{align}\left| A \right| &= 15 - 14\\& = 1\\& \ne 0\end{align}\]

So,\(A\) is non-singular.

Therefore, \({A^{ - 1}}\) exists.

Now,

\[\begin{align}{A^{ - 1}} &= \frac{1}{{\left| A \right|}}\left( {adjA} \right)\\& = \left( {\begin{array}{*{20}{c}}3&{ - 2}\\&{ - 7}&5\end{array}} \right)\end{align}\]

Then,

\[\begin{align}& \Rightarrow X = {A^{ - 1}}B\\& \Rightarrow \left[ {\begin{array}{*{20}{c}}x\\y\end{array}} \right] = \left( {\begin{array}{*{20}{c}}3&{ - 2}\\{ - 7}&5\end{array}} \right)\left[ {\begin{array}{*{20}{c}}4\\5\end{array}} \right]\\& \Rightarrow \left[ {\begin{array}{*{20}{c}}x\\y\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{12 - 10}\\{ - 28 + 25}\end{array}} \right]\\& \Rightarrow \left[ {\begin{array}{*{20}{c}}x\\y\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}2\\{ - 3}\end{array}} \right]\end{align}\]

Hence, \(x = 2\) and \(y = - 3\)

Chapter 4 Ex.4.6 Question 8

Solve system of linear equations, using matrix method.

\(\begin{align}2x - y &= - 2\\3x + 4y &= 3\end{align}\)

Solution

The given system of equations is: \(\begin{align}2x - y &= - 2\\3x + 4y &= 3\end{align}\)

The given system of equations can be written in the form of \(AX = B\), where

\(A = \left( {\begin{array}{*{20}{c}}2&{ - 1}\\3&4\end{array}} \right),X = \left[ {\begin{array}{*{20}{c}}x\\y\end{array}} \right]\) and \(B = \left[ {\begin{array}{*{20}{c}}{ - 2}\\3\end{array}} \right]\)

Hence,

\[\begin{align}\left| A \right| &= 8 + 3\\ &= 11\\ &\ne 0\end{align}\]

So, \(A\) is non-singular.

Therefore, \({A^{ - 1}}\) exists.

Now,

\[\begin{align}{A^{ - 1}} &= \frac{1}{{\left| A \right|}}\left( {adjA} \right)\\ &= \frac{1}{{11}}\left( {\begin{array}{*{20}{c}}4&1\\{ - 3}&2\end{array}} \right)\end{align}\]

Therefore,

\[\begin{align}& \Rightarrow X = {A^{ - 1}}B\\& \Rightarrow \left[ {\begin{array}{*{20}{c}}x\\y\end{array}} \right] = \frac{1}{{11}}\left( {\begin{array}{*{20}{c}}4&1\\{ - 3}&2\end{array}} \right)\left[ {\begin{array}{*{20}{c}}{ - 2}\\3\end{array}} \right]\\& \Rightarrow \left[ {\begin{array}{*{20}{c}}x\\y\end{array}} \right] = \frac{1}{{11}}\left[ {\begin{array}{*{20}{c}}{ - 8 + 3}\\{6 + 6}\end{array}} \right]\\& \Rightarrow \left[ {\begin{array}{*{20}{c}}x\\y\end{array}} \right] = \frac{1}{{11}}\left[ {\begin{array}{*{20}{c}}{ - 5}\\{12}\end{array}} \right]\\& \Rightarrow \left[ {\begin{array}{*{20}{c}}x\\y\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{\frac{{ - 5}}{{11}}}\\{\frac{{12}}{{11}}}\end{array}} \right]\end{align}\]

Hence, \(x = \frac{{ - 5}}{{11}}\) and \(y = \frac{{12}}{{11}}\)

Chapter 4 Ex.4.6 Question 9

Solve system of linear equations, using matrix method.

\(\begin{align}4x - 3y &= 3\\3x - 5y &= 7\end{align}\)

Solution

The given system of equations is: \(\begin{align}4x - 3y &= 3\\3x - 5y &= 7\end{align}\)

The given system of equations can be written in the form of \(AX = B\), where

\(A = \left( {\begin{array}{*{20}{c}}4&{ - 3}\\3&{ - 5}\end{array}} \right),X = \left[ {\begin{array}{*{20}{c}}x\\y\end{array}} \right]\) and \(B = \left[ {\begin{array}{*{20}{c}}3\\7\end{array}} \right]\)

Hence,

\[\begin{align}\left| A \right| &= - 20 + 9\\ &= - 11\\& \ne 0\end{align}\]

So, \(A\) is nonsingular.

Therefore, \({A^{ - 1}}\) exists.

Now,

\[\begin{align}{A^{ - 1}} &= \frac{1}{{\left| A \right|}}\left( {adjA} \right)\\& = - \frac{1}{{11}}\left( {\begin{array}{*{20}{c}}{ - 5}&3\\{ - 3}&4\end{array}} \right)\\& = \frac{1}{{11}}\left( {\begin{array}{*{20}{c}}5&{ - 3}\\3&{ - 4}\end{array}} \right)\end{align}\]

Therefore,

\[\begin{align} &\Rightarrow \; X = {A^{ - 1}}B\\& \Rightarrow \; \left[ {\begin{array}{*{20}{c}}x\\y\end{array}} \right] = \frac{1}{{11}}\left( {\begin{array}{*{20}{c}}5&{ - 3}\\3&{ - 4}\end{array}} \right)\left[ {\begin{array}{*{20}{c}}3\\7\end{array}} \right]\\& \Rightarrow \;\left[ {\begin{array}{*{20}{c}}x\\y\end{array}} \right] = \frac{1}{{11}}\left( {\begin{array}{*{20}{c}}5&{ - 3}\\3&{ - 4}\end{array}} \right)\left[ {\begin{array}{*{20}{c}}3\\7\end{array}} \right]\\& \Rightarrow \; \left[ {\begin{array}{*{20}{c}}x\\y\end{array}} \right] = \frac{1}{{11}}\left[ {\begin{array}{*{20}{c}}{15 - 21}\\{9 - 28}\end{array}} \right]\\& \Rightarrow \left[ {\begin{array}{*{20}{c}}x\\y\end{array}} \right] = \frac{1}{{11}}\left[ {\begin{array}{*{20}{c}}{ - 6}\\{ - 19}\end{array}} \right]\\&\Rightarrow \; \left[ {\begin{array}{*{20}{c}}x\\y\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{\frac{{ - 6}}{{11}}}\\{\frac{{ - 19}}{{11}}}\end{array}} \right]\end{align}\]

Hence, \(x = \frac{{ - 6}}{{11}}\) and \(y = \frac{{ - 19}}{{11}}\)

Chapter 4 Ex.4.6 Question 10

Solve system of linear equations, using matrix method.

\(\begin{align}5x + 2y &= 3\\3x + 2y &= 5\end{align}\)

Solution

The given system of equations is: \(\begin{align}5x + 2y &= 3\\3x + 2y &= 5\end{align}\)

The given system of equations can be written in the form of \(AX = B\), where

\(A = \left( {\begin{array}{*{20}{c}}5&2\\3&2\end{array}} \right),X = \left[ {\begin{array}{*{20}{c}}x\\y\end{array}} \right]\) and \(B = \left[ {\begin{array}{*{20}{c}}3\\5\end{array}} \right]\)

Hence,

\[\begin{align}\left| A \right| &= 10 - 6\\ &= 4\\ &\ne 0\end{align}\]

So, \(A\) is non-singular.

Therefore, \({A^{ - 1}}\) exists.

Now,

\[\begin{align}{A^{ - 1}}& = \frac{1}{{\left| A \right|}}\left( {adjA} \right)\\ &= \frac{1}{4}\left( {\begin{array}{*{20}{c}}2&{ - 2}\\{ - 3}&5\end{array}} \right)\end{align}\]

Therefore,

\[\begin{align}& \Rightarrow \;X = {A^{ - 1}}B\\ &\Rightarrow\; \left[ {\begin{array}{*{20}{c}}x\\y\end{array}} \right] = \frac{1}{4}\left( {\begin{array}{*{20}{c}}2&{ - 2}\\{ - 3}&5\end{array}} \right)\left[ {\begin{array}{*{20}{c}}3\\5\end{array}} \right]\\& \Rightarrow \;\left[ {\begin{array}{*{20}{c}}x\\y\end{array}} \right] = \frac{1}{4}\left( {\begin{array}{*{20}{c}}2&{ - 2}\\{ - 3}&5\end{array}} \right)\left[ {\begin{array}{*{20}{c}}3\\5\end{array}} \right]\\& \Rightarrow \; \left[ {\begin{array}{*{20}{c}}x\\y\end{array}} \right] = \frac{1}{4}\left[ {\begin{array}{*{20}{c}}{6 - 10}\\{ - 9 + 25}\end{array}} \right]\\& \Rightarrow \;\left[ {\begin{array}{*{20}{c}}x\\y\end{array}} \right] = \frac{1}{4}\left[ {\begin{array}{*{20}{c}}{ - 4}\\{16}\end{array}} \right]\\& \Rightarrow \;\left[ {\begin{array}{*{20}{c}}x\\y\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{ - 1}\\4\end{array}} \right]\end{align}\]

Hence, \(x = - 1\) and \(y = 4\)

Chapter 4 Ex.4.6 Question 11

Solve system of linear equations, using matrix method.

\(\begin{align}2x + y + z &= 1\\x - 2y - z& = \frac{3}{2}\\3y - 5z &= 9\end{align}\)

Solution

The given system of equations is: \(\begin{align}2x + y + z &= 1\\x - 2y - z &= \frac{3}{2}\\3y - 5z &= 9\end{align}\)

The given system of equations can be written in the form of \(AX = B\), where

\(A = \left( {\begin{array}{*{20}{c}}2&1&1\\1&{ - 2}&{ - 1}\\0&3&{ - 5}\end{array}} \right),X = \left[ {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right]\) and \(B = \left[ {\begin{array}{*{20}{c}}1\\{\frac{3}{2}}\\9\end{array}} \right]\)

Hence,

\[\begin{align}\left| A \right| &= 2\left( {10 + 3} \right) - 1\left( { - 5 - 3} \right) + 0\\ &= 2\left( {13} \right) - 1\left( { - 8} \right)\\& = 26 + 8\\& = 34\\ &\ne 0\end{align}\]

So, \(A\) is non-singular.

Therefore, \({A^{ - 1}}\) exists.

Now,

\[\begin{align}&{A_{11}} = 13\;\;\;\;\;\;\;\;\;\;{A_{12}} = 5\;\;\;\;\;\;\;\;\;\;{A_{13}} = 3\\&{A_{21}} = 8\;\;\;\;\;\;\;\;\;\;\;{A_{22}} = - 10\;\;\;\;\;\;{A_{23}} = - 6\\&{a_{31}} = 1\;\;\;\;\;\;\;\;\;\;\;\;{A_{32}} = 3\;\;\;\;\;\;\;\;\;\;{A_{33}} = - 5\end{align}\]

Hence,

\[\begin{align}{A^{ - 1}} &= \frac{1}{{\left| A \right|}}\left( {adjA} \right)\\ &= \frac{1}{{34}}\left( {\begin{array}{*{20}{c}}{13}&8&1\\5&{ - 10}&3\\3&{ - 6}&{ - 5}\end{array}} \right)\end{align}\]

Therefore,

\[\begin{align} &\Rightarrow \; X = {A^{ - 1}}B\\& \Rightarrow \; \left[ {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right] = \frac{1}{{34}}\left( {\begin{array}{*{20}{c}}{13}&8&1\\5&{ - 10}&3\\3&{ - 6}&{ - 5}\end{array}} \right)\left[ {\begin{array}{*{20}{c}}1\\{\frac{3}{2}}\\9\end{array}} \right]\\& \Rightarrow \; \left[ {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right] = \frac{1}{{34}}\left( {\begin{array}{*{20}{c}}{13}&8&1\\5&{ - 10}&3\\3&{ - 6}&{ - 5}\end{array}} \right)\left[ {\begin{array}{*{20}{c}}1\\{\frac{3}{2}}\\9\end{array}} \right]\\ & \Rightarrow\; \left[ {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right] = \frac{1}{{34}}\left[ {\begin{array}{*{20}{c}}{13 + 12 + 9}\\{5 - 15 + 27}\\{3 - 9 - 45}\end{array}} \right]\\ &\Rightarrow \;\left[ {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right] = \frac{1}{{34}}\left[ {\begin{array}{*{20}{c}}{34}\\{17}\\{ - 51}\end{array}} \right]\\& \Rightarrow \;\left[ {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}1\\{\frac{1}{2}}\\{ - \frac{3}{2}}\end{array}} \right]\end{align}\]

Hence, \(x = 1,y = \frac{1}{2}\) and \(z = \frac{{ - 3}}{2}\)

Chapter 4 Ex.4.6 Question 12

Solve system of linear equations, using matrix method.

\(\begin{align}x - y + z &= 4\\2x + y - 3z &= 0\\x + y + z &= 2\end{align}\)

Solution

The given system of equations is: \(\begin{align}x - y + z &= 4\\2x + y - 3z &= 0\\x + y + z &= 2\end{align}\)

The given system of equations can be written in the form of \(AX = B\), where

\(A = \left( {\begin{array}{*{20}{c}}1&{ - 1}&1\\2&1&{ - 3}\\1&1&1\end{array}} \right),X = \left[ {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right]\) and \(B = \left[ {\begin{array}{*{20}{c}}4\\0\\2\end{array}} \right]\)

Hence,

\[\begin{align}\left| A \right| &= 1\left( {1 + 3} \right) + 1\left( {2 + 3} \right) + 1\left( {2 - 1} \right)\\ &= 4 + 5 + 1\\ &= 10\\ &\ne 0\end{align}\]

So, \(A\) is nonsingular.

Therefore, \({A^{ - 1}}\) exists.

Now,

\[\begin{align}&{A_{11}} = 4\;\;\;\;\;\;\;\;\;{A_{12}} = - 5\;\;\;\;\;\;\;\;\;{A_{13}} = 1\\&{A_{21}} = 2\;\;\;\;\;\;\;\;\;{A_{22}} = 0\;\;\;\;\;\;\;\;\;\;\;{A_{23}} = - 2\\&{a_{31}} = 2\;\;\;\;\;\;\;\;\;{A_{32}} = 5\;\;\;\;\;\;\;\;\;\;\;\;{A_{33}} = 3\end{align}\]

Hence,

\[\begin{align}{A^{ - 1}} &= \frac{1}{{\left| A \right|}}\left( {adjA} \right)\\& = \frac{1}{{10}}\left( {\begin{array}{*{20}{c}}4&2&2\\{ - 5}&0&5\\1&{ - 2}&3\end{array}} \right)\end{align}\]

Therefore,

\[\begin{align} &\Rightarrow X = {A^{ - 1}}B\\& \Rightarrow \left[ {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right] = \frac{1}{{10}}\left( {\begin{array}{*{20}{c}}4&2&2\\{ - 5}&0&5\\1&{ - 2}&3\end{array}} \right)\left[ {\begin{array}{*{20}{c}}4\\0\\2\end{array}} \right]\\ &\Rightarrow \left[ {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right] = \frac{1}{{10}}\left( {\begin{array}{*{20}{c}}4&2&2\\{ - 5}&0&5\\1&{ - 2}&3\end{array}} \right)\left[ {\begin{array}{*{20}{c}}4\\0\\2\end{array}} \right]\\ &\Rightarrow \left[ {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right] = \frac{1}{{10}}\left[ {\begin{array}{*{20}{c}}{16 + 0 + 4}\\{ - 20 + 0 + 10}\\{4 + 0 + 6}\end{array}} \right]\\ &\Rightarrow \left[ {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right] = \frac{1}{{10}}\left[ {\begin{array}{*{20}{c}}{20}\\{ - 10}\\{10}\end{array}} \right]\\ &\Rightarrow \left[ {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}2\\{ - 1}\\1\end{array}} \right]\end{align}\]

Hence, \(x = 2,y = - 1\) and \(z = 1\)

Chapter 4 Ex.4.6 Question 13

Solve system of linear equations, using matrix method.

\(\begin{align}2x + 3y + 3z &= 5\\x - 2y + z &= - 4\\3x - y - 2z& = 3\end{align}\)

Solution

The given system of equations is: \(\begin{align}2x + 3y + 3z &= 5\\x - 2y + z &= - 4\\3x - y - 2z &= 3\end{align}\)

The given system of equations can be written in the form of \(AX = B\), where

\(A = \left( {\begin{array}{*{20}{c}}2&3&3\\1&{ - 2}&1\\3&{ - 1}&{ - 2}\end{array}} \right),X = \left[ {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right]\) and \(B = \left[ {\begin{array}{*{20}{c}}5\\{ - 4}\\3\end{array}} \right]\)

Hence,

\[\begin{align}\left| A \right| &= 2\left( {4 + 1} \right) - 3\left( { - 2 - 3} \right) + 3\left( { - 1 + 6} \right)\\ &= 10 + 15 + 15\\ &= 40\\& \ne 0\end{align}\]

So, \(A\) is non-singular.

Therefore, \({A^{ - 1}}\) exists.

Now,

\[\begin{align}&{A_{11}} = 5\;\;\;\;\;\;\;\;\;\;{A_{12}} = 5\;\;\;\;\;\;\;\;\;\;{A_{13}} = 5\\&{A_{21}} = 3\;\;\;\;\;\;\;\;\;\;{A_{22}} = - 13\;\;\;\;\;\;{A_{23}} = 11\\&{A_{31}} = 9\;\;\;\;\;\;\;\;\;\;{A_{32}} = 1\;\;\;\;\;\;\;\;\;\;{A_{33}} = - 7\end{align}\]

Hence,

\[\begin{align}{A^{ - 1}} &= \frac{1}{{\left| A \right|}}\left( {adjA} \right)\\ &= \frac{1}{{40}}\left( {\begin{array}{*{20}{c}}5&3&9\\5&{ - 13}&1\\5&{11}&{ - 7}\end{array}} \right)\end{align}\]

Therefore,

\[\begin{align}& \Rightarrow X = {A^{ - 1}}B\\& \Rightarrow \left[ {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right] = \frac{1}{{40}}\left( {\begin{array}{*{20}{c}}5&3&9\\5&{ - 13}&1\\5&{11}&{ - 7}\end{array}} \right)\left[ {\begin{array}{*{20}{c}}5\\{ - 4}\\3\end{array}} \right]\\& \Rightarrow \left[ {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right] = \frac{1}{{40}}\left( {\begin{array}{*{20}{c}}5&3&9\\5&{ - 13}&1\\5&{11}&{ - 7}\end{array}} \right)\left[ {\begin{array}{*{20}{c}}5\\{ - 4}\\3\end{array}} \right]\\ &\Rightarrow \left[ {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right] = \frac{1}{{40}}\left[ {\begin{array}{*{20}{c}}{25 - 12 + 27}\\{25 + 52 + 3}\\{25 - 44 - 21}\end{array}} \right]\\& \Rightarrow \left[ {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right] = \frac{1}{{40}}\left[ {\begin{array}{*{20}{c}}{40}\\{80}\\{ - 40}\end{array}} \right]\\& \Rightarrow \left[ {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}1\\2\\{ - 1}\end{array}} \right]\end{align}\]

Hence, \(x = 1,y = 2\) and \(z = - 1\)

Chapter 4 Ex.4.6 Question 14

Solve system of linear equations, using matrix method.

\(\begin{align}x - y + 2z &= 7\\3x + 4y - 5z &= - 5\\2x - y + 3z& = 12\end{align}\)

Solution

The given system of equations is: \(\begin{align}x - y + 2z &= 7\\3x + 4y - 5z &= - 5\\2x - y + 3z &= 12\end{align}\)

The given system of equations can be written in the form of \(AX = B\), where

\(A = \left( {\begin{array}{*{20}{c}}1&{ - 1}&2\\3&4&{ - 5}\\2&{ - 1}&3\end{array}} \right),\,X = \left[ {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right]\,\,{\rm{and}}\,\,B = \left[ {\begin{array}{*{20}{c}}7\\{ - 5}\\{12}\end{array}} \right]\)

Hence,

\[\begin{align}\left| A \right| &= 1\left( {12 - 5} \right) + 1\left( {9 + 10} \right) + 2\left( { - 3 - 8} \right)\\& = 7 + 19 - 22\\& = 4\\ &\ne 0\end{align}\]

So, \(A\) is non-singular.

Therefore, \({A^{ - 1}}\) exists.

Now,

\[\begin{align}&{A_{11}} = 7\;\;\;\;\;\;\;\;\;\;\;{A_{12}} = - 19\;\;\;\;\;\;\;\;\;\;\;{A_{13}} = - 11\\&{A_{21}} = 1\;\;\;\;\;\;\;\;\;\;\;{A_{22}} = - 1\;\;\;\;\;\;\;\;\;\;\;\;\;{A_{23}} = - 1\\&{a_{31}} = - 3\;\;\;\;\;\;\;\;\;{A_{32}} = 11\;\;\;\;\;\;\;\;\;\;\;\;{A_{33}} = 7\end{align}\]

Hence,

\[\begin{align}{A^{ - 1}} &= \frac{1}{{\left| A \right|}}\left( {adjA} \right)\\ &= \frac{1}{4}\left( {\begin{array}{*{20}{c}}7&1&{ - 3}\\{ - 19}&{ - 1}&{11}\\{ - 11}&{ - 1}&7\end{array}} \right)\end{align}\]

Therefore,

\[\begin{align}& \Rightarrow X = {A^{ - 1}}B\\& \Rightarrow \left[ {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right] = \frac{1}{4}\left( {\begin{array}{*{20}{c}}7&1&{ - 3}\\{ - 19}&{ - 1}&{11}\\{ - 11}&{ - 1}&7\end{array}} \right)\left[ {\begin{array}{*{20}{c}}7\\{ - 5}\\{12}\end{array}} \right]\\ &\Rightarrow \left[ {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right] = \frac{1}{4}\left( {\begin{array}{*{20}{c}}7&1&{ - 3}\\{ - 19}&{ - 1}&{11}\\{ - 11}&{ - 1}&7\end{array}} \right)\left[ {\begin{array}{*{20}{c}}7\\{ - 5}\\{12}\end{array}} \right]\\ &\Rightarrow \left[ {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right] = \frac{1}{4}\left[ {\begin{array}{*{20}{c}}{49 - 5 - 36}\\{ - 133 + 5 + 132}\\{ - 77 + 5 + 84}\end{array}} \right]\end{align}\]

\[\begin{align}& \Rightarrow \left[ {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right] = \frac{1}{4}\left[ {\begin{array}{*{20}{c}}{49 - 5 - 36}\\{ - 133 + 5 + 132}\\{ - 77 + 5 + 84}\end{array}} \right]\\& \Rightarrow \left[ {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right] = \frac{1}{4}\left[ {\begin{array}{*{20}{c}}8\\4\\{12}\end{array}} \right]\\& \Rightarrow \left[ {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}2\\1\\3\end{array}} \right]\end{align}\]

Hence, \(x = 2,y = 1\) and \(z = 3\)

Chapter 4 Ex.4.6 Question 15

If \(A = \left( {\begin{array}{*{20}{c}}2&{ - 3}&5\\3&2&{ - 4}\\1&1&{ - 2}\end{array}} \right)\), find \({A^{ - 1}}\). Using \({A^{ - 1}}\) solve the system of equations

\(\begin{align}&2x - 3y + 5z = 11\\&3x + 2y - 4z = - 5\\&x + y - 2z = - 3\end{align}\)

Solution

It is given that \(A = \left( {\begin{array}{*{20}{c}}2&{ - 3}&5\\3&2&{ - 4}\\1&1&{ - 2}\end{array}} \right)\)

Therefore,

\[\begin{align}\left| A \right|& = 2\left( { - 4 + 4} \right) + 3\left( { - 6 + 4} \right) + 5\left( {3 - 2} \right)\\& = 0 - 6 + 5\\& = - 1\\ &\ne 0\end{align}\]

Now,

\[\begin{align}&{A_{11}} = 0\;\;\;\;\;\;\;\;\;\;{A_{12}} = 2\;\;\;\;\;\;\;\;\;\;{A_{13}} = 1\\&{A_{21}} = - 1\;\;\;\;\;\;\;\;{A_{22}} = - 9\;\;\;\;\;\;\;\;{A_{23}} = - 5\\&{a_{31}} = 2\;\;\;\;\;\;\;\;\;\;{A_{32}} = 23\;\;\;\;\;\;\;\;\;{A_{33}} = 13\end{align}\]

Hence,

\[\begin{align}{A^{ - 1}} &= \frac{1}{{\left| A \right|}}\left( {adjA} \right)\\ &= - \left( {\begin{array}{*{20}{c}}0&{ - 1}&2\\2&{ - 9}&{23}\\1&{ - 5}&{13}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0&1&{ - 2}\\{ - 2}&9&{ - 23}\\{ - 1}&5&{ - 13}\end{array}} \right)\end{align}\]

The given system of equations can be written in the form of \(AX = B\), where

\(A = \left( {\begin{array}{*{20}{c}}2&{ - 3}&5\\3&2&{ - 4}\\1&1&{ - 2}\end{array}} \right),X = \left[ {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right]\) and \(B = \left[ {\begin{array}{*{20}{c}}{11}\\{ - 5}\\{ - 3}\end{array}} \right]\)

The solution of the system of equations is given by \(X = {A^{ - 1}}B\).

Therefore,

\[\begin{align}& \Rightarrow X = {A^{ - 1}}B\\& \Rightarrow \left[ {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right] = \left( {\begin{array}{*{20}{c}}0&1&{ - 2}\\{ - 2}&9&{ - 23}\\{ - 1}&5&{ - 13}\end{array}} \right)\left[ {\begin{array}{*{20}{c}}{11}\\{ - 5}\\{ - 3}\end{array}} \right]\\ &\Rightarrow \left[ {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right] = \left( {\begin{array}{*{20}{c}}0&1&{ - 2}\\{ - 2}&9&{ - 23}\\{ - 1}&5&{ - 13}\end{array}} \right)\left[ {\begin{array}{*{20}{c}}{11}\\{ - 5}\\{ - 3}\end{array}} \right]\\& \Rightarrow \left[ {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{0 - 5 + 6}\\{ - 22 - 45 + 69}\\{ - 11 - 25 + 39}\end{array}} \right]\\ &\Rightarrow \left[ {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}1\\2\\3\end{array}} \right]\end{align}\]

Hence, \(x = 1,y = 2\) and \(z = 3\)

Chapter 4 Ex.4.6 Question 16

The cost of 4 kg onion, 3 kg wheat and 2 kg rice is ₹\({\rm{6}}0\). The cost of 2 kg onion, 4 kg wheat and 6 kg rice is ₹\({\rm{9}}0\). The cost of 6 kg onion 2 kg wheat and 3 kg rice is ₹\({\rm{7}}0\). Find cost of each item per kg by matrix method.

Solution

Let the cost of onions, wheat, and rice per kg in ₹ be \(x,y\) and \(z\) respectively.

Then, the given situation can be represented by a system of equations as:

\[\begin{align}4x + 3y + 2z &= 60\\2x + 4y + 6z &= 90\\6x + 2y + 3z &= 70\end{align}\]

The given system of equations can be written in the form of \(AX = B\), where

\(A = \left( {\begin{array}{*{20}{c}}4&3&2\\2&4&6\\6&2&3\end{array}} \right),X = \left[ {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right]\) and \(B = \left[ {\begin{array}{*{20}{c}}{60}\\{90}\\{70}\end{array}} \right]\)

Therefore,

\[\begin{align}\left| A \right| &= 4\left( {12 - 12} \right) - 3\left( {6 - 36} \right) + 2\left( {4 - 24} \right)\\ &= 0 + 90 - 40\\ &= 50\\ &\ne 0\end{align}\]

So, \(A\) is non-singular.

Therefore, \({A^{ - 1}}\) exists.

Now,

\[\begin{align}&{A_{11}} = 0\;\;\;\;\;\;\;\;\;\;\;{A_{12}} = 30\;\;\;\;\;\;\;\;\;\;\;{A_{13}} = - 20\\&{A_{21}} = - 5\;\;\;\;\;\;\;\;\;{A_{22}} = 0\;\;\;\;\;\;\;\;\;\;\;\;\;{A_{23}} = 10\\&{A_{31}} = 10\;\;\;\;\;\;\;\;\;{A_{32}} = - 20\;\;\;\;\;\;\;\;\;\;{A_{33}} = 10\end{align}\]

Therefore,

\[\begin{align}{A^{ - 1}} &= \frac{1}{{\left| A \right|}}\left( {adjA} \right)\\& = \frac{1}{{50}}\left( {\begin{array}{*{20}{c}}0&{ - 5}&{10}\\{30}&0&{ - 20}\\{ - 20}&{10}&{10}\end{array}} \right)\end{align}\]

Hence,

\[\begin{align}& \Rightarrow X = {A^{ - 1}}B\\& \Rightarrow \left[ {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right] = \frac{1}{{50}}\left( {\begin{array}{*{20}{c}}0&{ - 5}&{10}\\{30}&0&{ - 20}\\{ - 20}&{10}&{10}\end{array}} \right)\left[ {\begin{array}{*{20}{c}}{60}\\{90}\\{70}\end{array}} \right]\\& \Rightarrow \left[ {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right] = \frac{1}{{50}}\left( {\begin{array}{*{20}{c}}0&{ - 5}&{10}\\{30}&0&{ - 20}\\{ - 20}&{10}&{10}\end{array}} \right)\left[ {\begin{array}{*{20}{c}}{60}\\{90}\\{70}\end{array}} \right]\\& \Rightarrow \left[ {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right] = \frac{1}{{50}}\left[ {\begin{array}{*{20}{c}}{0 - 450 + 700}\\{1800 + 0 - 1400}\\{ - 1200 + 900 + 700}\end{array}} \right]\\& \Rightarrow \left[ {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right] = \frac{1}{{50}}\left[ {\begin{array}{*{20}{c}}{250}\\{400}\\{400}\end{array}} \right]\\& \Rightarrow \left[ {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}5\\8\\8\end{array}} \right]\end{align}\]

Thus, \(x = 5,y = 8\) and \(z = 8\)

Hence, the cost of onions is ₹ 5 per kg

the cost of wheat is ₹ 8 per kg, and

the cost of rice is ₹ 8 per kg.

  
Download Cuemath NCERT App
Related Sections
Related Sections

Learn from the best math teachers and top your exams

Learn from the best

math teachers and top

your exams


Personalized Curriculum
Instant Doubts clarification
Cover latest CBSE Syllabus
Unlimited Mock & Practice tests
Covers CBSE, ICSE, IB curriculum

Instant doubt clearing with Cuemath Advanced Math Program
0