NCERT Solutions For Class 12 Maths Chapter 8 Exercise 8.1

Go back to  'Application of Integrals'

Chapter 8 Ex.8.1 Question 1

Find the area of the region bounded by the curve \({y^2} = x\) and the lines \(x = 1,x = 4\) and the x-axis in the first quadrant.

Solution

                                  

\[\begin{align}ar\left( {ABCD} \right) &= \int_1^4 {ydx} \\ &= \int_1^4 {\sqrt x dx} \\& = \left[ {\frac{{{x^{\frac{3}{2}}}}}{{\frac{3}{2}}}} \right]_1^4\\ &= \frac{2}{3}\left[ {{{\left( 4 \right)}^{\frac{3}{2}}} - {{\left( 1 \right)}^{\frac{3}{2}}}} \right]\\ &= \frac{2}{3}\left[ {8 - 1} \right]\\ &= \frac{{14}}{3}\end{align}\]

Chapter 8 Ex.8.1 Question 2

Find the area of the region bounded by \({y^2} - 9x,x = 2,x = 4\) and the x-axis in the first quadrant.

Solution

             

\[\begin{align}ar\left( {ABCD} \right) &= \int_2^4 {ydx} \\ &= \int_2^4 {3\sqrt x dx} \\ & = 3\left[ {\frac{{{x^{\frac{3}{2}}}}}{{\frac{3}{2}}}} \right]_2^4\\& = 2\left[ {{x^{\frac{3}{2}}}} \right]_2^4\\ & = 2\left[ {{{\left( 4 \right)}^{\frac{3}{2}}} - {{\left( 2 \right)}^{\frac{3}{2}}}} \right]\\ &= 2\left[ {8 - 2\sqrt 2 } \right]\\ &= \left( {16 - 4\sqrt 2 } \right)\end{align}\]

Chapter 8 Ex.8.1 Question 3

Find the area of the region bounded by \({x^2} = 4y,y = 2,y = 4\) and the y-axis in the first quadrant.

Solution

\[\begin{align}ar\left( {ABCD} \right) &= \int_2^4 {xdy} \\ &= \int_2^4 {2\sqrt y dy} = 2\int_2^4 {\sqrt y dy} \\& = 2\left[ {\frac{{{y^{\frac{3}{2}}}}}{{\frac{3}{2}}}} \right]_2^4\\ &= \frac{4}{3}\left[ {{{\left( 4 \right)}^{\frac{3}{2}}} - {{\left( 2 \right)}^{\frac{3}{2}}}} \right] = \frac{4}{3}\left[ {8 - 2\sqrt 2 } \right]\\& = \left( {\frac{{32 - 8\sqrt 2 }}{3}} \right)\end{align}\]

Chapter 8 Ex.8.1 Question 4

Find the area of the region bounded by the ellipse \(\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1\).

Solution

It is given that

\[\begin{align}& \Rightarrow \frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1\\ &\Rightarrow \frac{{{y^2}}}{9} = 1 - \frac{{{x^2}}}{{16}}\\ &\Rightarrow y = 3\sqrt {1 - \frac{{{x^2}}}{{16}}}\end{align}\]

Area of ellipse \( = 4 \times ar\left( {OAB} \right)\)

\[\begin{align}ar\left( {OAB} \right)& = \int_0^4 {ydx} \\ &= \int_0^4 {3\sqrt {1 - \frac{{{x^2}}}{{16}}} dx} \\ &= \frac{3}{4}\int_0^4 {\sqrt {16 - {x^2}} } dx\\ &= \frac{3}{4}\left[ {\frac{x}{2}\sqrt {16 - {x^2}} + \frac{{16}}{2}{{\sin }^{ - 1}}\frac{x}{4}} \right]_0^4\\ &= \frac{3}{4}\left[ {2\sqrt {16 - 16} + 8{{\sin }^{ - 1}}\left( 1 \right) - 0 - 8{{\sin }^{ - 1}}\left( 0 \right)} \right]\\ &= \frac{3}{4}\left[ {\frac{{8\pi }}{2}} \right]\\ &= \frac{3}{4}\left[ {4\pi } \right]\\ &= 3\pi\end{align}\]

Area of ellipse \( = 4 \times 3\pi = 12\pi \) units

Chapter 8 Ex.8.1 Question 5

Find the area of the region bounded by the ellipse \(\frac{{{x^2}}}{4} + \frac{{{y^2}}}{9} = 1\)

Solution

It is given that

\[\begin{align}& \Rightarrow \frac{{{x^2}}}{4} + \frac{{{y^2}}}{9} = 1\\& \Rightarrow y = 3\sqrt {1 - \frac{{{x^2}}}{4}}\end{align}\]

Area of ellipse \( = 4 \times ar\left( {OAB} \right)\)

\[\begin{align}ar\left( {OAB} \right) &= \int_0^2 {ydx} \\&= \int_0^2 {3\sqrt {1 - \frac{{{x^2}}}{4}} } dx\\ &= \frac{3}{2}\int_0^2 {\sqrt {4 - {x^2}} } dx\\& = \frac{3}{2}\left[ {\frac{x}{2}\sqrt {4 - {x^2}} + \frac{4}{2}{{\sin }^{ - 1}}\frac{x}{2}} \right]_0^2\\ &= \frac{3}{2}\left[ {\frac{{2\pi }}{2}} \right]\\ &= \frac{{3\pi }}{2}\end{align}\]

Area of ellipse \( = 4 \times \frac{{3\pi }}{2} = 6\pi \) units.

Chapter 8 Ex.8.1 Question 6

Find the area of the region in the first quadrant enclosed by x-axis, line \(x = \sqrt 3 y\) and the circle \({x^2} + {y^2} = 4\)

Solution

\(ar\left( {OAB} \right) = ar\left( {\Delta OAC} \right) + ar\left( {ABC} \right)\)

\[\begin{align}ar\left( {\Delta OAC} \right) &= \frac{1}{2} \times OC \times AC\\ &= \frac{1}{2} \times \sqrt 3 \times 1\\ &= \frac{{\sqrt 3 }}{2}\end{align}\]

\[\begin{align}ar\left( {ABC} \right)&= \int_{\sqrt 3 }^2 {ydx} \\ &= \int_{\sqrt 3 }^2 {\sqrt {4 - {x^2}} dx} \\ &= \left[ {\frac{x}{2}\sqrt {4 - {x^2}} + \frac{4}{2}{{\sin }^{ - 1}}\left( {\frac{x}{2}} \right)} \right]_{\sqrt 3 }^2\\ &= \left[ {2 \times \frac{\pi }{2} - \frac{{\sqrt 3 }}{2}\sqrt {4 - 3} - 2{{\sin }^{ - 1}}\left( {\frac{{\sqrt 3 }}{2}} \right)} \right]\\& = \left[ {\pi - \frac{{\sqrt 3 }}{2} - 2\left( {\frac{\pi }{3}} \right)} \right]\\ &= \left[ {\pi - \frac{{2\pi }}{3} - \frac{{\sqrt 3 }}{2}} \right]\\& = \left[ {\frac{{3\pi - 2\pi }}{3} - \frac{{\sqrt 3 }}{2}} \right]\\ &= \left[ {\frac{\pi }{3} - \frac{{\sqrt 3 }}{2}} \right]\end{align}\]

Therefore, required area enclosed \( = \frac{{\sqrt 3 }}{2} + \frac{\pi }{3} - \frac{{\sqrt 3 }}{2} = \frac{\pi }{3}\) square units.

Chapter 8 Ex.8.1 Question 7

Find the area of the smaller part of the circle \({x^2} + {y^2} = {a^2}\) cut off by the line \(x = \frac{a}{{\sqrt 2 }}\).

Solution

The area of the smaller part of the circle, \({x^2} + {y^2} = {a^2}\) cut off by the line, \(x = \frac{a}{{\sqrt 2 }}\), is the area ABCD.

It can be observed that the area ABCD is symmetrical about x-axis.

\(ar\left( {ABCD} \right) = 2 \times ar\left( {ABC} \right)\)

\[\begin{align}ar\left( {ABC} \right) &= \int_{\frac{a}{{\sqrt 2 }}}^a {ydx} \\ &= \int_{\frac{a}{{\sqrt 2 }}}^a {\sqrt {{a^2} - {x^2}} dx} \\ &= \left[ {\frac{x}{2}\sqrt {{a^2} - {x^2}} + \frac{{{a^2}}}{2}{{\sin }^{ - 1}}\left( {\frac{x}{a}} \right)} \right]_{\frac{a}{{\sqrt 2 }}}^a\\& = \left[ {\frac{{{a^2}}}{2}\left( {\frac{\pi }{2}} \right) - \frac{a}{{2\sqrt 2 }}\sqrt {{a^2} - \frac{{{a^2}}}{2}} - \frac{{{a^2}}}{2}{{\sin }^{ - 1}}\left( {\frac{1}{{\sqrt 2 }}} \right)} \right]\\ &= \frac{{{a^2}\pi }}{4} - \frac{a}{{2\sqrt 2 }}.\frac{a}{{\sqrt 2 }} - \frac{{{a^2}}}{2}\left( {\frac{\pi }{4}} \right)\\ &= \frac{{{a^2}\pi }}{4} - \frac{{{a^2}}}{4} - \frac{{{a^2}\pi }}{8}\\ &= \frac{{{a^2}}}{4}\left[ {\pi - 1 - \frac{\pi }{2}} \right]\\& = \frac{{{a^2}}}{4}\left[ {\frac{\pi }{2} - 1} \right]\end{align}\]

\[\begin{align}ar\left( {ABCD} \right) &= 2\left[ {\frac{{{a^2}}}{4}\left( {\frac{\pi }{2} - 1} \right)} \right]\\ &= \frac{{{a^2}}}{2}\left( {\frac{\pi }{2} - 1} \right)\end{align}\]

Therefore, the required area is \(\frac{{{a^2}}}{2}\left( {\frac{\pi }{2} - 1} \right)\) square units.

Chapter 8 Ex.8.1 Question 8

The area between \(x = {y^2}\) and \(x = {\rm{4 }}\) is divided into two equal parts by the line \(x = a\), find the value of \(a\).

Solution

The line \(x = a\) divides the area bounded by the parabola and \(x = {\rm{4 }}\)into two equal parts.

Therefore, \(ar\left( {OAD} \right) = ar\left( {ABCD} \right)\)

It can be observed that the given area is symmetrical about x-axis.

Hence, \(ar\left( {OED} \right) = ar\left( {EFCD} \right)\)

\[\begin{align}ar\left( {OED} \right) &= \int_0^a {ydx} \\ = \int_0^a {\sqrt x dx} \\ &= \left[ {\frac{{{x^{\frac{3}{2}}}}}{{\frac{3}{2}}}} \right]_0^a\\ = \frac{2}{3}{a^{\frac{3}{2}}}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \ldots \left( 1 \right)\end{align}\]

\[\begin{align}ar\left( {EFCD} \right) &= \int_a^4 {\sqrt x dx} \\ &= \left[ {\frac{{{x^{\frac{3}{2}}}}}{{\frac{3}{2}}}} \right]_a^4\\ &= \frac{2}{3}\left[ {8 - {a^{\frac{3}{2}}}} \right]\;\;\;\;\;\;\;\;\;\;\;\;\;\; \ldots \left( 2 \right)\end{align}\]

From (1) and (2), we obtain

\[\begin{align}& \Rightarrow \frac{2}{3}{\left( a \right)^{\frac{3}{2}}} = \frac{2}{3}\left[ {8 - {{\left( a \right)}^{\frac{3}{2}}}} \right]\\& \Rightarrow 2{\left( a \right)^{\frac{3}{2}}} = 8\\& \Rightarrow {\left( a \right)^{\frac{3}{2}}} = 4\\& \Rightarrow a = {\left( 4 \right)^{\frac{2}{3}}}\end{align}\]

Therefore, the value of \(a = {\left( 4 \right)^{\frac{2}{3}}}\).

Chapter 8 Ex.8.1 Question 9

Find the area of the region bounded by the parabola \(y = {x^2}\) and the line \(y = \left| x \right|\).

Solution

The area bounded by the parabola \(y = {x^2}\) and the line \(y = \left| x \right|\), can be represented as

The given area is symmetrical about y-axis.

Therefore, \(ar\left( {OACO} \right) = ar\left( {ODBO} \right)\)

The point of intersection of parabola \(y = {x^2}\) and the line \(y = \left| x \right|\), is \(A\left( {1,1} \right)\).

\(ar\left( {OACO} \right) = ar\left( {\Delta OAM} \right) - ar\left( {OMACO} \right)\)

\[\begin{align}ar\left( {OMACO} \right) &= \int_0^1 {ydx} \\ &= \int_0^1 {{x^2}dx} \\ &= \left[ {\frac{{{x^3}}}{3}} \right]_0^1\\ &= \frac{1}{3}\end{align}\]

\[\begin{align}ar\left( {OACO} \right) &= ar\left( {\Delta OAM} \right) - ar\left( {OMACO} \right)\\& = \frac{1}{2} - \frac{1}{3}\\ &= \frac{1}{6}\end{align}\]

Therefore, the required area \( = 2\left[ {\frac{1}{6}} \right] = \frac{1}{3}\) units.

Chapter 8 Ex.8.1 Question 10

Find the area bounded by the curve \({x^2} = 4y\) and the line \(x = 4y - 2\).

Solution

Coordinates of point \(A\left( { - 1,\frac{1}{4}} \right)\).

Coordinates of point \(B\left( {2,1} \right)\).

Draw AL and BM perpendicular to x-axis.

\(ar\left( {OBAO} \right) = ar\left( {OBCO} \right) + ar\left( {OACO} \right)\)

\[\begin{align}ar\left( {OBCO} \right) &= ar\left( {OMBC} \right) - ar\left( {OMBO} \right)\\ &= \int_0^2 {\frac{{x + 2}}{4}dx - \int_0^2 {\frac{{{x^2}}}{4}dx} } \\ &= \frac{1}{4}\left[ {\frac{{{x^2}}}{2} + 2x} \right]_0^2 - \frac{1}{4}\left[ {\frac{{{x^3}}}{3}} \right]_0^2\\& = \frac{1}{4}\left[ {2 + 4} \right] - \frac{1}{4}\left[ {\frac{8}{3}} \right]\\& = \frac{3}{2} - \frac{2}{3}\\& = \frac{5}{6}\end{align}\]

\[\begin{align}ar\left( {OACO} \right) &= ar\left( {OLAC} \right) - ar\left( {OLAO} \right)\\& = \int_{ - 1}^0 {\frac{{x + 2}}{4}dx} - \int_{ - 1}^0 {\frac{{{x^2}}}{4}dx} \\& = \frac{1}{4}\left[ {\frac{{{x^2}}}{2} + 2x} \right]_{ - 1}^0 - \frac{1}{4}\left[ {\frac{{{x^3}}}{3}} \right]_{ - 1}^0\\ &= - \frac{1}{4}\left[ {\frac{{{{\left( { - 1} \right)}^2}}}{2} + 2\left( { - 1} \right)} \right] - \left[ { - \frac{1}{4}\left( {\frac{{{{\left( { - 1} \right)}^3}}}{3}} \right)} \right]\\ &= - \frac{1}{4}\left[ {\frac{1}{2} - 2} \right] - \frac{1}{{12}}\\& = - \frac{1}{8} + \frac{1}{2} - \frac{1}{{12}}\\ &= \frac{7}{{24}}\end{align}\]

Required area \( = \left( {\frac{5}{6} + \frac{7}{{24}}} \right) = \frac{9}{8}\) units.

Chapter 8 Ex.8.1 Question 11

Find the area of the region bounded by the curve \({y^2} = 4x\) and the line \(x = 3\).

Solution

OACO is symmetrical about x-axis.

Therefore, \(ar\left( {OACO} \right) = 2 \times ar\left( {AOB} \right)\)

\[\begin{align}ar\left( {OACO} \right) &= 2\left[ {\int_0^3 {ydx} } \right]\\ &= 2\left[ {\int_0^3 {2\sqrt x dx} } \right]\\& = 4\left[ {\frac{{{x^{\frac{3}{2}}}}}{{\frac{3}{2}}}} \right]_0^3\\ &= \frac{8}{3}\left[ {{{\left( 3 \right)}^{\frac{3}{2}}}} \right]\\ &= 8\sqrt 3\end{align}\]

Required area is \(8\sqrt 3 \) units.

Chapter 8 Ex.8.1 Question 12

Area lying in the first quadrant and bounded by the circle \({x^2} + {y^2} = 4\) and the lines \(x = 0\) and \(x = {\rm{2}}\) is

(A) \(\pi \)

(B) \(\frac{\pi }{2}\)

(C) \(\frac{\pi }{3}\)

(D) \(\frac{\pi }{4}\)

Solution

\[\begin{align}ar\left( {OAB} \right) &= \int_0^2 {ydx} \\& = \int_0^2 {\sqrt {4 - {x^2}} } dx\\ &= \left[ {\frac{x}{2}\sqrt {4 - {x^2}} + \frac{4}{2}{{\sin }^{ - 1}}\frac{x}{2}} \right]_0^2\\& = 2\left( {\frac{\pi }{2}} \right)\\& = \pi\end{align}\]

Correct answer is A.

Chapter 8 Ex.8.1 Question 13

Area of the region bounded by the curve \({y^2} = 4x\), \(y\)-axis and the line \(y = 3\) is

(A) \(2\)

(B) \(\frac{9}{4}\)

(C) \(\frac{9}{3}\)

(D) \(\frac{9}{2}\)

Solution

\[\begin{align}ar\left( {OAB} \right) &= \int_0^3 {xdy} \\& = \int_0^3 {\frac{{{y^2}}}{4}dy} \\& = \frac{1}{4}\left[ {\frac{{{y^3}}}{3}} \right]_0^3\\ &= \frac{1}{{12}}\left( {27} \right)\\& = \frac{9}{4}\end{align}\]

Correct answer is \(B\).

  
Download Cuemath NCERT App
Related Sections
Related Sections

Learn from the best math teachers and top your exams

Learn from the best

math teachers and top

your exams


Personalized Curriculum
Instant Doubts clarification
Cover latest CBSE Syllabus
Unlimited Mock & Practice tests
Covers CBSE, ICSE, IB curriculum

Instant doubt clearing with Cuemath Advanced Math Program
0