NCERT Solutions For Class 10 Maths Chapter 8 Exercise 8.3

Go back to  'Introduction to Trigonometry'

Chapter 8 Ex.8.3 Question 1

Evaluate:

(i)  \(\;\frac{\sin {{18}^{0}}}{\cos {{72}^{0}}}\)

(ii) \( \;\frac{\tan {{26}^{0}}}{\cot {{64}^{0}}}\)

(iii) \(\;\cos {{48}^{0}}-\sin {{42}^{0}}\)

(iv) \(\;\text{cosec}\,{{31}^{0}}-\sec \,{{59}^{0}}\)

Solution

Video Solution

Reasoning:

\[\begin{align} \sin \left(90^{\circ}-\theta\right) &=\cos \theta \\ \tan \left(90^{\circ}-\theta\right) &=\cot \theta \\ \sec \left(90^{\circ}-\theta\right) &=\text{cosec} \;\theta \end{align}\]

Solution:

\(\begin{align}\rm (i)\qquad \frac{\sin {{18}^{0}}}{\cos {{72}^{0}}}\end{align}\)

\(\begin{align}\text{Since,}&\\ &\sin \left( {{90}^{0}}-\theta \right)=\cos \theta \end{align}\)

Here \(\text{ }\!\!\theta\!\!\text{ }={{72}^{0}}\)

\(\begin{align} & ∴   =\frac{\sin ({{90}^{0}}-{{72}^{0}})}{\cos {{72}^{0}}} \\ & \,\,\,\,=\frac{\cos {{72}^{0}}}{\cos {{72}^{0}}} \\ & \,\,\,\,=1 \\ \end{align}\)

\(\begin{align}\text{(ii)} \qquad\frac{\tan {{26}^{0}}}{\cot {{64}^{0}}}\end{align}\)

\(\begin{align}\text{Since}&, \\ &\tan ({{90}^{0}}-\theta )=\cot \theta \end{align}\)

Here \(\theta ={{64}^{0}}\)

\(\begin{align} & ∴ =\frac{\tan ({{90}^{0}}-{{64}^{0}})}{\cot {{64}^{0}}} \\ & \,\,\,\,=\frac{\cot {{64}^{0}}}{\cot {{64}^{0}}} \\ & \,\,\,\,=1 \\ \end{align}\)

\(\text{(iii)}\qquad\cos {{48}^{0}}-\sin {{42}^{0}}\)

\(\begin{align}\text{Since}&, \\&\sin ({{90}^{0}}-\theta )=\cos \theta\end{align} \)

Here \(\text{ }\!\!\theta\!\!\text{ }={{48}^{0}}\)

\(\begin{align} ∴ \ &=\cos {{48}^{0}}-\sin \left( {{90}^{0}}-{{48}^{0}} \right) \\ & =\cos {{48}^{0}}-\cos {{48}^{0}} \\ & =0 \end{align}\)

\(\text{(iv) }\qquad\text{cosec}{{31}^{0}}-\sec {{59}^{0}}\)

\(\begin{align}\text{Since}&,\\ &\sec \,({{90}^{0}}-\theta )=\operatorname{cosec}\theta\end{align} \)

Here \(\theta ={{31}^{0}}\)

Therefore,

\(\begin{align}  \,& \text{cosec}{{31}^{\circ}}-\sec {{59}^{\circ}}\\ & =\operatorname{cosec}{{31}^{\circ}}-\sec \left( {{90}^{\circ}}-{{31}^{\circ}} \right) \\ & =\operatorname{cosec}{{31}^{\circ}}-\operatorname{cosec}{{31}^{\circ}} \\ & =0 \end{align}\)

Chapter 8 Ex.8.3 Question 2

Show that:

(i) \(\begin{align}\text{tan}\,48{}^\circ \,\text{tan}\,23{}^\circ \, \text{tan}\,42{}^\circ \ \text{tan}\,67{}^\circ =1\end{align}\)

(ii) \(\begin{align}\text{cos}\,38{}^\circ \,\cos \,52{}^\circ  -\sin 38{}^\circ \ \sin 52{}^\circ  =0 \end{align}\)

Solution

Video Solution
 

Reasoning:

\(\sin \left( {{90}^{\circ}}-\theta \right)=\cos \theta \)

\(\tan ({{90}^{\circ}}-\theta )=\cot \theta \)

Steps: 

(i)Taking

\(\text{L.H.S }= \text{tan}\,48{}^\circ \,\text{tan}\,23{}^\circ \,\text{tan}\,42{}^\circ \ \text{tan}\,67{}^\circ \)

Since \(\tan \,({{90}^{\circ}}-\theta)=\cot \theta\)

\[\begin{align}\text{L.H.S }& =\tan({{90}^{\circ}}-{{42}^{\circ}}) \tan ({{90}^{\circ}}-{{67}^{\circ}}) \tan {{42}^{\circ}}\tan {{67}^{\circ}}\\ & =\cot {{42}^{\circ}}\cot {{67}^{\circ}}\tan {{42}^{\circ}}\tan {{67}^{\circ}} \\ & = (\cot {{42}^{\circ}}\tan {{42}^{\circ}}) (\cot {{67}^{\circ}}\tan {{67}^{\circ}})\\ & = \left( \frac{1}{\tan {{42}^{\circ}}}\tan {{42}^{\circ}} \right)  \left( \frac{1}{\tan {{67}^{\circ}}}\tan {{67}^{\circ}} \right) \\ & =1\,\times\;1\\&=1 \\ & =\text{R.H.S}\end{align}\]

Hence,

 \(\text{tan}\,48{}^\circ \,\text{tan}\,23{}^\circ \,\text{tan}\,42{}^\circ \ \text{tan}\,67{}^\circ =1\)

(ii) Taking

\(\begin{align}\text{L.H.S }\!=\!\text{cos}\,38{}^\circ \,\cos \,52{}^\circ -\sin 38{}^\circ \ \sin 52{}^\circ\end{align}\)

Since, \(\tan ({{90}^{circ}}-\theta)=\cos \theta\)

\[\begin{align}\text{L.H.S }& = \cos {{38}^{\circ}}\cos {{52}^{\circ}}  -\sin \,({{90}^{\circ}}-{{57}^{\circ}}) \sin \,({{90}^{\circ}}-{{38}^{\circ}})\\ & =\cos {{38}^{\circ}}\cos {{52}^{\circ}}-\cos {{52}^{\circ}}\cos {{38}^{\circ}} \\ & =0 \\ & =\text{R.H.S} \\ \end{align}\]

Hence,

\(\cos {{38}^{\circ}}\cos {{52}^{\circ}}-\sin {{38}^{\circ}}\sin {{52}^{\circ}}=0\)

Chapter 8 Ex.8.3 Question 3

If \({\rm{tan}}2A = {\rm{cot}}\left( {A-18^\circ } \right)\) , where \(2A\) is an acute angle, find the value of \(A.\)

Solution

Video Solution

Reasoning:

\(\tan ({90^0} - \theta ) = \cot \theta \)

Steps:

Given that:

\({\rm{tan}}2{\rm{A}} = {\rm{cot}}\left( {{\rm{A}}-18^\circ } \right)\)…....(i)

But \(\tan 2{\rm{A}} = \cot \,({90^0} - 2{\rm{A}}) \)

By substituting this in equation (i) we get:

\[\begin{align} \cot \,\left( {{{90}^0} - 2A} \right) &= \cot \,\left( {A - {{18}^0}} \right)\\ {90^0} - 2A &= A - {18^0}\\ 3A &= {108^0}\\ A &= \frac{{{{108}^0}}}{3} = {36^0}\\ A &= {36^0} \end{align}\]

Chapter 8 Ex.8.3 Question 4

If \(\tan A = \cot B\,,\) prove that \(A + B = {90^0}.\)

Solution

Video Solution

Reasoning:

\(\tan ({90^0} - \theta ) = \cot \theta \)

Steps:

Given that:

\(\begin{align}\,\tan A = \cot B \dots \rm (i)\end{align}\)

We know that,

\(\tan A = \cot \left( {{{90}^0} - A} \right)\)

By substituting this in equation (i) we get:

\[\begin{align} \cot \,({90^0} - A) &= \cot B\\ {90^0} - A &= B\\ A + B &= {90^0} \end{align}\]

Chapter 8 Ex.8.3 Question 5

If \(\,{\rm{sec}}4A = {\rm{cosec}}\left( {A-20^\circ } \right),\)where \(4A\) is an acute angle, find the value of \(A\).

Solution

Video Solution

Reasoning:

\(\sec A = {\rm{cosec}}\,\left( {{{90}^0} - A} \right) \)

Steps:

Given that: \(\text{sec} \;4\;A= \text{cosec} (A -20^{\circ}) \)….(i)

Since, \(\sec A = {\rm{cosec}}\,\left( {{{90}^0} - A} \right) \)

By using property in equation (i) we get:

\(\begin{align} {\rm{cosec}}\left( {{\rm{9}}{{\rm{0}}^\circ} - 4A} \right) &= {\rm{cosec}}\left( {A - {{20}^\circ}} \right)\\ {90^\circ} - 4A &= A - {20^\circ}\\ 5A &= {110^\circ}\\ A &= \frac{{{{110}^\circ}}}{5}\\ &= {22^\circ}\\ A &= {22^\circ} \end{align}\)

Chapter 8 Ex.8.3 Question 6

If \(A\), \(B\) and \(C\) are interior angles of a triangle \(ABC\), then show that

\(\begin{align} \sin \,\left( {\frac{{B + C}}{2}} \right) = \cos \frac{A}{2}\end{align}\)

Solution

Video Solution

Reasoning:

\(\sin \left( {{{90}^0} - \theta } \right) = \cos \theta \)

Steps:

We know that for \(\Delta \,ABC,\)

\[\begin{align} \angle \,A + \angle \,B + \angle \,C &= {180^0}\\ \angle \,B + \angle \,C &= {180^0} - \angle \,A \end{align}\]

On dividing both sides by \(2\), we get:

\[\begin{align} \frac{{\angle \,B + \angle \,C}}{2} &= \frac{{{{180}^0} - \angle \,A}}{2}\\ \frac{{\angle \,B + \angle \,C}}{2} &= {90^0} - \frac{{\angle \,A}}{2} \end{align}\]

Applying sine angles on both the sides:

\[\begin{align}\sin \,\left( {\frac{{B + C}}{2}} \right) = \sin \,\left( {{{90}^0} - \frac{A}{2}} \right)\end{align}\]

Since

\[\begin{align} \sin \,({90^0} - \theta ) &= \cos \theta \\ ∴  \sin \,\left( {\frac{{B + C}}{2}} \right) &= \cos \,\left( {\frac{A}{2}} \right) \end{align}\]

Chapter 8 Ex.8.3 Question 7

Express \(\sin {67^0} + \cos {75^0}\) in terms of trigonometric ratios of angles between \({0^0}\) and \({45^0}\) .

Solution

Video Solution

Reasoning:

\(\cos \left( {{{90}^0} - \theta } \right) = \sin \theta \)

Steps:

Given that: \(\sin {67^0} + \cos {75^0}\) ….(i)

Since \(\cos \left( {{{90}^0} - \theta } \right) = \sin \theta \)

By using property in equation (i) we get:

\[\begin{align} &=\! \sin \left( {{{90}^\circ} - {{23}^\circ}} \right) \!+\! \cos \left( {{{90}^\circ} \!-\! {{15}^\circ}} \right)\\ &= \cos {23^\circ} + \sin {15^\circ} \end{align}\]

Hence, the expression \(\cos {23^0} + \sin {15^0}\) has trigonometric ratios of angles between \({0^0}\) and \({45^0}\) .

Download SOLVED Practice Questions of NCERT Solutions For Class 10 Maths Chapter 8 Exercise 8.3 for FREE
Ncert Class 10 Exercise 8.3
Ncert Solutions For Class 10 Maths Chapter 8 Exercise 8.3
  
Download Cuemath NCERT App
Related Sections
Related Sections

Learn from the best math teachers and top your exams

Learn from the best

math teachers and top

your exams


Personalized Curriculum
Instant Doubts clarification
Cover latest CBSE Syllabus
Unlimited Mock & Practice tests
Covers CBSE, ICSE, IB curriculum

Instant doubt clearing with Cuemath Advanced Math Program