Exercise 9.4 Algebraic Expressions and Identities- NCERT Solutions Class 8

Go back to  'Algebraic Expressions and Identities'

Chapter 9 Ex.9.4 Question 1

Multiply the binomials.

(i) \(\left( {2x + 5} \right) \) and \(\left( {4x - 3} \right)\)

(ii) \(\left( {y - 8} \right)\) and \(\left( {3y - 4} \right)\)

(iii) \(\left( {2.5l{\rm{ }} - {\rm{ }}0.5 m} \right)\) and  \(\left( {2.5l{\rm{ }} + {\rm{ }}0.5m} \right)\)

(iv) \(\left( {a + 3b} \right)\) and \({\rm{ }}\left( {x + 5} \right)\)

(v) \(\left( {2pq + 3{q^2}} \right)\) and \(\left( {3pq - 2{q^2}} \right)\)

(vi) \(\begin{align}\left( \frac{3}{4}{{a}^{2}}+3{{b}^{2}} \right)\end{align}\) and \(\begin{align}\left[ 4\left( {{a}^{2}}-\frac{2}{3}{{b}^{2}} \right) \right]\end{align}\)

Solution

Video Solution

What is known?

Expressions

What is unknown?

Multiplication

Reasoning:

i) By using the distributive law, we can carry out the multiplication term by term.

ii) In multiplication of polynomials with polynomials, we should always look for like terms, if any, and combine them.

Steps:

(i)\(( 2x+5 ) \times ( 4x-3 )\)

\[\begin{align} &= 2x \!\times \! \left( 4x-3 \right) \! + \!5\!\times\! \left( 4x\!-\!3 \right)  \\ &=8{{x}^{2}}-6x+20x-15 \\&=8{{x}^{2}}+14x-15\\ &\quad \left[ \text{By adding } \text{like terms} \right]\\\end{align}\]

(ii) \(\left( {y - 8} \right)\)  \(\times\)  \(\left( {3y - 4} \right)\)

\[\begin{align} &= y \!\times(\! 3y-4 ) \! -8 \!\times \! (3y-4 )  \\ &=3{{y}^{2}}-4y\text{ }-24y+32 \\&=3{{y}^{2}}-28y+32 \\& \quad [ \text{By adding } \text{like terms}] \\\end{align}\]

(iii) \(\left( {2.5l{\rm{ }} - {\rm{ }}0.5 m} \right)\)  \(\times\)   \(\left( {2.5l{\rm{ }} + {\rm{ }}0.5m} \right)\)

\[\begin{align}& = \begin{bmatrix} 2.5l\times \left( 2.5l+0.5m \right)-\\   0.5m\left( 2.5l+0.5m \right) \end{bmatrix} \\ &= \begin{bmatrix} 6.25{{l}^{2}}+1.25lm - \\ 1.25lm-0.25{{m}^{2}} 
 \end{bmatrix} \\&=6.25{{l}^{2}}-0.25{{m}^{2}} \\\end{align}\]

(iv) \(\left( {a + 3b} \right)\) \(\times\) \({\rm{ }}\left( {x + 5} \right)\)

\[\begin{align}&=  a \!\times\! \left( x \!+5 \right) \! +3b \! \times\! \left( x\! + \!5 \right)  \\&=ax+5a+3bx+15b \\\end{align}\]

(v) \(\left( {2pq + 3{q^2}} \right)\) \(\times\) \(\left( {3pq - 2{q^2}} \right)\)

\[\begin{align}& = \begin{bmatrix} 2pq\times \left( 3pq-2{{q}^{2}} \right)\\ +3{{q}^{2}}\times \left( 3pq-2{{q}^{2}} \right) \end{bmatrix} \\ &=  6{{p}^{2}}{{q}^{2}}\!-\!\text{ }4p{{q}^{3}} \!+\!9p{{q}^{3}}\!-\!6{{q}^{4}}\\&=6{{p}^{2}}{{q}^{2}}\text{ }+\text{ }5p{{q}^{3}}-6{{q}^{4}} \\\end{align}\]

(vi) \(\begin{align}\left( \frac{3}{4}{{a}^{2}}+3{{b}^{2}} \right)\times \left[ 4\left( {{a}^{2}}-\frac{2}{3}{{b}^{2}} \right) \right]\end{align}\)

\[\begin{align}&=  \left( {\frac{3}{4}{a^2} \!+\! 3{b^2}} \right)\! \! \times \!\!\left( {4{a^2} \!- \!\frac{8}{3}{b^2}} \right) \\&=\begin{bmatrix} \frac{3}{4}{a^2} \times \left( {4{a^2} - \frac{8}{3}{b^2}} \right)+ \\  3{b^2} \times \left( {4{a^2} - \frac{8}{3}{b^2}} \right) \end{bmatrix} \\&= \begin{bmatrix} \left( {\frac{3}{\not{4}}{a^2} \times {\not{4}}{a^2}} \right)-\\  \left( {\frac{\not{3}}{\not{4}}{a^2} \times \frac{{{\not{8}^2}}}{\not{3}}{b^2}} \right)+ \\  \left( {3{b^2} \times 4{a^2}} \right)- \\  \left( \not3{{b^2} \times \frac{8}{\not{3}}{b^2}} \right) \end{bmatrix} \\&=\begin{bmatrix} 3{a^4} - 2{b^2}{a^2} +\\  12{b^2}{a^2} - 8{b^4} \end{bmatrix} \\&= 3{a^4} + 10{a^2}{b^2} - 8{b^4}\end{align}\]

Chapter 9 Ex.9.4 Question 2

Find the product.

i) \(\left( {5{\rm{ }} - {\rm{ }}2x} \right)\) \(\left( {3{\rm{ }} + {\rm{ }}x} \right)\)

ii) \(\left( {x{\rm{ }} + {\rm{ }}7y} \right)\)\(\left( {7x{\rm{ }} - {\rm{ }}y} \right)\)

iii) \(\left( {{a^2}{\rm{ }} + {\rm{ }}b} \right)\) \(\left( {a{\rm{ }} + {\rm{ }}{b^2}} \right)\)

iv) \(\left( {{p^2}{\rm{ }} - {\rm{ }}{q^2}} \right)\) \( \left( {2p{\rm{ }} + {\rm{ }}q} \right)\)

Solution

Video Solution

What is known?

Expressions

What is unknown?

Simplification

Reasoning:

i) By using the distributive law, we can carry out the multiplication term by term.

ii) In multiplication of polynomials with polynomials, we should always look for like terms, if any, and combine them.

Steps:

i) \(\left( {5{\rm{ }} - {\rm{ }}2x} \right)\) \(\left( {3{\rm{ }} + {\rm{ }}x} \right)\)

\[\begin{align}&= 5{\rm{ }}\left( {3 + x} \right){\rm{ }} - 2x\left( {3 + x} \right)\\&= {\rm{ }}15 + 5x{\rm{ }} - 6x - 2{x^2}\\&= {\rm{ }}15 - x - 2{x^2}\end{align}\]

ii) \(\left( {x{\rm{ }} + {\rm{ }}7y} \right)\)\(\left( {7x{\rm{ }} - {\rm{ }}y} \right)\)

\[\begin{align}&= {\rm{ }}x{\rm{ }}\left( {7x{\rm{ }} - {\rm{ }}y} \right){\rm{ }} + {\rm{ }}7y{\rm{ }}\left( {7x{\rm{ }} - {\rm{ }}y} \right)\\&= {\rm{ }}7{x^2} - xy{\rm{ }} + 49xy{\rm{ }} - 7{y^2}\\&= {\rm{ }}7{x^2} + 48xy{\rm{ }} - 7{y^2}\end{align}\]

iii) \(\left( {{a^2}{\rm{ }} + {\rm{ }}b} \right)\) \(\left( {a{\rm{ }} + {\rm{ }}{b^2}} \right)\)

\[\begin{align}&= {\rm{ }}{a^2}\left( {a + {b^2}} \right){\rm{ }} + {\rm{ }}b\left( {a + {b^2}} \right)\\&= {\rm{ }}{a^3} + {a^2}{b^2} + ab + {b^3}\end{align}\]

iv) \(\left( {{p^2}{\rm{ }} - {\rm{ }}{q^2}} \right)\) \( \left( {2p{\rm{ }} + {\rm{ }}q} \right)\)

\[\begin{align}&= {\rm{ }}{p^2}{\rm{ }}\left( {2p + {\rm{ }}q} \right){\rm{ }} - {\rm{ }}{q^2}\left( {2p{\rm{ }} + {\rm{ }}q} \right)\\&= {\rm{ }}2{p^{3{\rm{ }}}} + {p^2}q - 2p{q^2} - {q^3}\end{align}\]

Chapter 9 Ex.9.4 Question 3

Simplify.

i) \(\left( {{x^2} - 5} \right){\rm{ }}\left( {x{\rm{ }} + 5} \right) + 25\)

ii) \(\left( {{a^2} + 5} \right)\left( {{b^3} + 3} \right){\rm{ }} + 5\)

iii) \(\left( {t + {s^2}} \right)\left( {{t^2} - s} \right)\)

iv) \(\begin{bmatrix} \left( {a{\rm{ }} + {\rm{ }}b} \right)\left( {c{\rm{ }} - {\rm{ }}d} \right) \\+ {\rm{ }}\left( {a{\rm{ }} - {\rm{ }}b} \right)\left( {c{\rm{ }} + {\rm{ }}d} \right)\\+ {\rm{ }}2{\rm{ }}\left( {ac{\rm{ }} + {\rm{ }}bd} \right)\end{bmatrix}\)

v) \(\begin{bmatrix}\left( {x{\rm{ }} + {\rm{ }}y} \right)\left( {2x{\rm{ }} + {\rm{ }}y} \right)\\+ {\rm{ }}\left( {x{\rm{ }} + {\rm{ }}2y} \right)\left( {x{\rm{ }} - {\rm{ }}y} \right)\end{bmatrix}\)

vi) \(\left( {x{\rm{ }} + {\rm{ }}y} \right)\left( {{x^2}{\rm{ }} - {\rm{ }}xy{\rm{ }} + {\rm{ }}{y^2}} \right)\)

vii) \(\begin{bmatrix}\left( {1.5x{\rm{ }} - {\rm{ }}4y} \right)\left( {1.5x{\rm{ }} + {\rm{ }}4y{\rm{ }} + {\rm{ }}3} \right){\rm{ }}\\ - {\rm{ }}4.5x{\rm{ }} + {\rm{ }}12y \end{bmatrix}\)

viii) \(\left( {a{\rm{ }} + b + {\rm{ }}c} \right)\left( {a{\rm{ }} + b{\rm{ }} - {\rm{ }}c} \right)\)

Solution

Video Solution

What is known?

Expressions

What is unknown?

Simplification

Steps:

i) \(\left( {{x^2} - 5} \right){\rm{ }}\left( {x{\rm{ }} + 5} \right) + 25\)

\[\begin{align}&= \begin{bmatrix} {x^2}\left( {x + 5} \right) - \\ 5\left( {x + 5} \right) + 25 \end{bmatrix} \\ &= \begin{bmatrix}{x^3} + 5{x^2} - \\  5x - 25 + 25 \end{bmatrix} \\&={x^3} + 5{x^2} - 5x\end{align}\]

ii) \(\left( {{a^2} + 5} \right)\left( {{b^3} + 3} \right){\rm{ }} + 5\)

\[\begin{align}&=\begin{bmatrix} {a^2}\left( {{b^3} + 3} \right)+ \\  5\left( {{b^3} + 3} \right) + 5 \end{bmatrix} \\&= \begin{bmatrix} {a^2}{b^3} + 3{a^2} +  \\ 5{b^3} + 15 + 5 \end{bmatrix} \\&= \begin{bmatrix} {a^2}{b^3}+ 3{a^2} + \\  5{b^3} + 20 \end{bmatrix} \end{align}\]

iii) \(\left( {t + {s^2}} \right)\left( {{t^2} - s} \right)\)

\[\begin{align}&= {\rm{ }}t{\rm{ }}\left( {{t^2} - s} \right) + {s^2}\left( {{t^2} - s} \right)\\&= {\rm{ }}{t^3} - st + {\rm{ }}{s^2}{t^2} - {s^3}\end{align}\]

iv)

 \(\begin{bmatrix} \left( {a{\rm{ }} + {\rm{ }}b} \right)\left( {c{\rm{ }} - {\rm{ }}d} \right) \\+ {\rm{ }}\left( {a{\rm{ }} - {\rm{ }}b} \right)\left( {c{\rm{ }} + {\rm{ }}d} \right)\\+ {\rm{ }}2{\rm{ }}\left( {ac{\rm{ }} + {\rm{ }}bd} \right)\end{bmatrix}\)

\[\begin{align}&=\begin{bmatrix}a\left( {c - d} \right)+ b\left( {c - d} \right) \\ + a\left( {c + d} \right) - b\left( {c + d} \right)\\  + 2\left( {ac + bd} \right)\end{bmatrix} \\ &= \begin{bmatrix}ac - ad + bc - bd \\  + ac + ad - bc \\ - bd + 2ac + 2bd \end{bmatrix}\\ &=\begin{bmatrix}\left( {ac + ac+2ac} \right) \\  + \left( {ad - ad} \right) +\left( {bc - bc} \right) \\  + \left( {2bd - bd - bd} \right) \end{bmatrix}\\&= 4ac\end{align}\]

v)

\(\begin{bmatrix}\left( {x{\rm{ }} + {\rm{ }}y} \right)\left( {2x{\rm{ }} + {\rm{ }}y} \right)\\+ {\rm{ }}\left( {x{\rm{ }} + {\rm{ }}2y} \right)\left( {x{\rm{ }} - {\rm{ }}y} \right)\end{bmatrix}\)

\[\begin{align}&= \begin{bmatrix} x \left( {2x + y} \right)+y \left( {2x + y} \right) \\ + x \left( {x - y} \right) + 2y \left( {x - y} \right)\end{bmatrix} \\&=\begin{bmatrix} 2{x^2} +  xy  +  2xy \\ +{y^2} + {x^2} -xy \\ + 2xy - 2{y^2}\end{bmatrix}\\ &= \begin{bmatrix} \left( {2{x^2} +{x^2}} \right)+ \left( {{y^2} -2{y^2}} \right) \\ + \left( {xy + 2xy - xy + 2xy} \right) \end{bmatrix} \\&= 3{x^2} - {y^2} +4xy\end{align}\]

vi) \(\left( {x{\rm{ }} + {\rm{ }}y} \right)\left( {{x^2}{\rm{ }} - {\rm{ }}xy{\rm{ }} + {\rm{ }}{y^2}} \right)\)

\[\begin{align}&=\begin{bmatrix} x\left( {{x^2} -xy + {y^2}} \right) \\ + y \left( {{x^2} - xy + {y^2}} \right)\end{bmatrix} \\&=\begin{bmatrix} {x^3} - {x^2}y + x{y^2} \\ + {x^2}y - x{y^2} + {y^3}\end{bmatrix} \\&=\begin{bmatrix} {x^3} + {y^3} + \\ \left( {x{y^2}- x{y^2}} \right) \\ + \left( {{x^2}y - {x^2}y} \right)\end{bmatrix} \\&= {\rm{ }}{x^3}{\rm{ }} + {y^3}\end{align}\]

vii)

\(\begin{bmatrix}\left( {1.5x{\rm{ }} - {\rm{ }}4y} \right)\left( {1.5x{\rm{ }} + {\rm{ }}4y{\rm{ }} + {\rm{ }}3} \right){\rm{ }}\\ - {\rm{ }}4.5x{\rm{ }} + {\rm{ }}12y \end{bmatrix}\)

\[\begin{align}&=\begin{bmatrix}1.5x \left( {1.5x + 4y + 3} \right) \\ - 4y \left( {1.5x + 4y + 3} \right) \\ - 4.5x + 12y\end{bmatrix} \\ &= \begin{bmatrix} 2.25 {x^2} + 6xy + 4.5x \\ - 6xy - 16{y^2} - 12y \\ - 4.5x + 12y \end{bmatrix} \\&=\begin{bmatrix} 2.25 {x^2} + \left( {6xy - 6xy} \right) \\ + \left( {4.5x - 4.5x} \right)- 16{y^2} \\ + \left( {12y - 12y} \right) \end{bmatrix} \\&= 2.25{x^2} - 16{y^2}\end{align}\]

viii) \(\left( {a{\rm{ }} + b + {\rm{ }}c} \right)\left( {a{\rm{ }} + b{\rm{ }} - {\rm{ }}c} \right)\)

\[\begin{align}&= \begin{bmatrix} a \left( {a + b - c} \right) \\ + b\left( {a +b - c} \right) \\ + c\left( {a + b - c} \right)\end{bmatrix} \\&= \begin{bmatrix} {a^2} + ab - ac \\ + ab + {b^2} - bc \\ + ca + bc - {c^2}\end{bmatrix}\\&= \begin{bmatrix}{a^2} + {b^2} - {c^2} \\+ \left( {ab + ab} \right) + \left( {bc- bc} \right) \\+ \left( {ca - ca} \right)\end{bmatrix}\\&= {a^{2}} + {b^2} - {c^2} + 2ab\end{align}\]

  
Download Cuemath NCERT App
Related Sections
Related Sections

Learn from the best math teachers and top your exams

Learn from the best

math teachers and top

your exams


Personalized Curriculum
Instant Doubts clarification
Cover latest CBSE Syllabus
Unlimited Mock & Practice tests
Covers CBSE, ICSE, IB curriculum

Instant doubt clearing with Cuemath Advanced Math Program
0