NCERT Solutions For Class 11 Maths Chapter 9 Exercise 9.4

Go back to  'Sequences and Series'

Chapter 9 Ex.9.4 Question 1

Find the sum to \(n\) terms of the series \(1 \times 2 + 2 \times 3 + 3 \times 4 + 4 \times 5 + \ldots \)

 

Solution

 

The given series is \(1 \times 2 + 2 \times 3 + 3 \times 4 + 4 \times 5 + \ldots n{\rm{ terms}}\)

Hence,

\({a_n} = n\left( {n + 1} \right)\)

Therefore,

\[\begin{align}{S_n} &= \sum\limits_{k = 1}^n {{a_k}}  = \sum\limits_{k = 1}^n {k\left( {k + 1} \right)} \\ &= \sum\limits_{k = 1}^n {{k^2} + } \sum\limits_{k = 1}^n k \\ &= \frac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} + \frac{{n\left( {n + 1} \right)}}{2}\\& = \frac{{n\left( {n + 1} \right)}}{2}\left( {\frac{{2n + 1}}{3} + 1} \right)\\ &= \frac{{n\left( {n + 1} \right)}}{2}\left( {\frac{{2n + 4}}{3}} \right)\\ &= \frac{n}{3}\left( {n + 1} \right)\left( {n + 2} \right)\end{align}\]

Chapter 9 Ex.9.4 Question 2

Find the sum to terms of the series \(1 \times 2 \times 3 + 2 \times 3 \times 4 + 3 \times 4 \times 5 + 4 \times 5 + \ldots \)

   

Solution

The given series is \(1 \times 2 \times 3 + 2 \times 3 \times 4 + 3 \times 4 \times 5 + 4 \times 5 + \ldots n{\rm{ terms}}\)

Hence,

\[\begin{align}{a_n} &= n\left( {n + 1} \right)\left( {n + 2} \right)\\&= \left( {{n^2} + n} \right)\left( {n + 2} \right)\\&= {n^3} + 3{n^2} + 2n\end{align}\]

Therefore,

\[\begin{align}{S_n} &= \sum\limits_{k = 1}^n {{a_k}} \\&= \sum\limits_{k = 1}^n {\left( {{k^3} + 3{k^2} + 2k} \right)} \\&= \sum\limits_{k = 1}^n {{k^3} + 3} \sum\limits_{k = 1}^n {{k^2} + 2} \sum\limits_{k = 1}^n k \\&= {\left[ {\frac{{n\left( {n + 1} \right)}}{2}} \right]^2} + \frac{{3n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} + \frac{{2n\left( {n + 1} \right)}}{2}\\&= {\left[ {\frac{{n\left( {n + 1} \right)}}{2}} \right]^2} + \frac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{2} + n\left( {n + 1} \right)\end{align}\]

\[\begin{align}{S_n} &= \frac{{n\left( {n + 1} \right)}}{2}\left[ {\frac{{n\left( {n + 1} \right)}}{2} + 2n + 1 + 2} \right]\\&= \frac{{n\left( {n + 1} \right)}}{2}\left[ {\frac{{{n^2} + n + 4n + 6}}{2}} \right]\\&= \frac{{n\left( {n + 1} \right)}}{4}\left[ {{n^2} + 5n + 6} \right]\\&= \frac{{n\left( {n + 1} \right)}}{4}\left[ {{n^2} + 2n + 3n + 6} \right]\\&= \frac{{n\left( {n + 1} \right)\left[ {n\left( {n + 2} \right) + 3\left( {n + 2} \right)} \right]}}{4}\\&= \frac{n}{4}\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)\end{align}\]

Chapter 9 Ex.9.4 Question 3

Find the sum to \(n\) terms of the series \(3 \times {1^2} + 5 \times {2^2} + 7 \times {3^2} + \ldots \)

  

Solution

The given series is \(3 \times {1^2} + 5 \times {2^2} + 7 \times {3^2} + \ldots n{\rm{ terms}}\)

Hence,

\[\begin{align}{a_n}&= \left( {2n + 1} \right){n^2}\\&= 2{n^3} + {n^2}\end{align}\]

Therefore,

\[\begin{align}{S_n} &= \sum\limits_{k = 1}^n {{a_k}} \\&= \sum\limits_{k = 1}^n {\left( {2{k^3} + {k^2}} \right)} \\&= 2\sum\limits_{k = 1}^n {{k^3} + } \sum\limits_{k = 1}^n {{k^2}} \\&= 2{\left[ {\frac{{n\left( {n + 1} \right)}}{2}} \right]^2} + \frac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}\\&= \frac{{{n^2}{{\left( {n + 1} \right)}^2}}}{2} + \frac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}\\&= \frac{{n\left( {n + 1} \right)}}{2}\left[ {n\left( {n + 1} \right) + \frac{{2n + 1}}{3}} \right]\\&= \frac{{n\left( {n + 1} \right)}}{2}\left[ {\frac{{3{n^2} + 3n + 2n + 1}}{3}} \right]\\&= \frac{{n\left( {n + 1} \right)}}{2}\left[ {\frac{{3{n^2} + 5n + 1}}{3}} \right]\\&= \frac{n}{6}\left( {n + 1} \right)\left( {3{n^2} + 5n + 1} \right)\end{align}\]

Chapter 9 Ex.9.4 Question 4

Find the sum to \(n\)terms of the series \(\frac{1}{{1 \times 2}} + \frac{1}{{2 \times 3}} + \frac{1}{{3 \times 4}} + \ldots \)

 

Solution

 

The given series is \(\frac{1}{{1 \times 2}} + \frac{1}{{2 \times 3}} + \frac{1}{{3 \times 4}} + \ldots n{\rm{ terms}}\)

Hence,

\[\begin{align}{a_n}&= \frac{1}{{n\left( {n + 1} \right)}}\\&= \frac{1}{n} - \frac{1}{{n + 1}}\end{align}\]

Therefore,

\[\begin{align}{a_1} &= \frac{1}{1} - \frac{1}{2}\\{a_2} &= \frac{1}{2} - \frac{1}{3}\\{a_3}& = \frac{1}{3} - \frac{1}{4}\\{a_n} &= \frac{1}{n} - \frac{1}{{n + 1}}\end{align}\]

Adding the above terms column wise, we obtain

\[{a_1} + {a_2} + { \ldots _n} = \left[ {\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + . \ldots \frac{1}{n}} \right] - \left[ {\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \ldots \frac{1}{{n + 1}}} \right]\]

Thus,

\[\begin{align}{S_n} &= 1 - \frac{1}{{n + 1}}\\&= \frac{{n + 1 - 1}}{{n + 1}}\\&= \frac{n}{{n + 1}}\end{align}\]

Chapter 9 Ex.9.4 Question 5

Find the sum to \(n\) terms of the series \({5^2} + {6^2} + {7^2} + \cdots + {20^2}\)

Solution

The given series is \({5^2} + {6^2} + {7^2} + \cdots + {20^2}\)

Hence,

\[\begin{align}{a_n} &= {\left( {n + 4} \right)^2}\\&= {n^2} + 8n + 16\end{align}\]

Therefore,

\[\begin{align}{S_n}&= \sum\limits_{k = 1}^n {{a_k}} \\&= \sum\limits_{k = 1}^n {\left( {{k^2} + 8k + 16} \right)} \end{align}\]

\[\begin{align}{S_n} &= \sum\limits_{k = 1}^n {{k^2} + 8} \sum\limits_{k = 1}^n k + \sum\limits_{k = 1}^n {16} \\&= \frac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} + \frac{{8n\left( {n + 1} \right)}}{2} + 16n\end{align}\]

Since, \(16^{th}\) term is \({\left( {16 + 4} \right)^2} = {\left( {20} \right)^2}\)

Then,

\[\begin{align}{S_{16}} &= \frac{{16\left( {16 + 1} \right)\left( {2\left( {16} \right) + 1} \right)}}{6} + \frac{{8\left( {16} \right)\left( {16 + 1} \right)}}{2} + 16\left( {16} \right)\\&= \frac{{\left( {16} \right)\left( {17} \right)\left( {33} \right)}}{6} + \frac{{\left( {128} \right)\left( {17} \right)}}{2} + 256\\&= 1496 + 1088 + 256\\&= 2840\end{align}\]

Thus, \({5^2} + {6^2} + {7^2} + \cdots + {20^2} = 2840\)

Chapter 9 Ex.9.4 Question 6

Find the sum to \(n\)terms of the series \(3 \times 8 + 6 \times 11 + 9 \times 14 + \ldots \)

Solution

The given series is \(3 \times 8 + 6 \times 11 + 9 \times 14 + \ldots n{\rm{ terms}}\)

Hence,

\[\begin{align}{a_n} &= \left( {{n^{th}}{\text{ term of }}3,6,9 \ldots } \right) \times \left( {{n^{th}}{\text{ term of }}8,11,14 \ldots } \right)\\&= \left( {3n} \right)\left( {3n + 5} \right)\\&= 9{n^2} + 15n\end{align}\]

Therefore,

\[\begin{align}{S_n}& = \sum\limits_{k = 1}^n {{a_k}} \\&= \sum\limits_{k = 1}^n {\left( {9{k^2} + 15k} \right)} \\&= 9\sum\limits_{k = 1}^n {{k^2} + 15} \sum\limits_{k = 1}^n k \\&= 9 \times \frac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} + 15 \times \frac{{n\left( {n + 1} \right)}}{2}\\&= \frac{{3n\left( {n + 1} \right)\left( {2n + 1} \right)}}{2} + \frac{{15n\left( {n + 1} \right)}}{2}\\&= \frac{{3n\left( {n + 1} \right)}}{2}\left( {2n + 1 + 5} \right)\\&= \frac{{3n\left( {n + 1} \right)}}{2}\left( {2n + 6} \right)\\&= 3n\left( {n + 1} \right)\left( {n + 3} \right)\end{align}\]

Chapter 9 Ex.9.4 Question 7

Find the sum to terms of the series \({{1}^{2}}+\left( {{1}^{2}}+{{2}^{2}} \right)+\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}} \right)+\ldots \)

   

Solution

   

The given series is \({{1}^{2}}+\left( {{1}^{2}}+{{2}^{2}} \right)+\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}} \right)+\ldots n\text{ terms}\)

Hence,

\[\begin{align}  {{a}_{n}}&=\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+\ldots +{{n}^{2}} \right) \\ & =\frac{n}{6}\left( n+1 \right)\left( 2n+1 \right) \\ & =\frac{n}{6}\left( 2{{n}^{2}}+3n+1 \right) \\ & =\frac{1}{3}{{n}^{3}}+\frac{1}{2}{{n}^{2}}+\frac{1}{6}n \end{align}\]

Therefore,

\[\begin{align}{S_n} &= \sum\limits_{k = 1}^n {{a_k}} \\&= \sum\limits_{k = 1}^n {\left( {\frac{1}{3}{k^3} + \frac{1}{2}{k^2} + \frac{1}{6}k} \right)} \\&= \frac{1}{3}\sum\limits_{k = 1}^n {{k^3} + } \frac{1}{2}\sum\limits_{k = 1}^n {{k^2}} + \frac{1}{6}\sum\limits_{k = 1}^n k \\&= \frac{1}{3} \times \frac{{{n^2}{{\left( {n + 1} \right)}^2}}}{{{{\left( 2 \right)}^2}}} + \frac{1}{2} \times \frac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} + \frac{1}{6} \times \frac{{n\left( {n + 1} \right)}}{2}\\&= \frac{{n\left( {n + 1} \right)}}{6}\left[ {\frac{{n\left( {n + 1} \right)}}{2} + \frac{{\left( {2n + 1} \right)}}{2} + \frac{1}{2}} \right]\\&= \frac{{n\left( {n + 1} \right)}}{6}\left[ {\frac{{{n^2} + n + 2n + 1 + 1}}{2}} \right]\\&= \frac{{n\left( {n + 1} \right)}}{6}\left[ {\frac{{{n^2} + n + 2n + 2}}{2}} \right]\\&= \frac{{n\left( {n + 1} \right)}}{6}\left[ {\frac{{n\left( {n + 1} \right) + 2\left( {n + 1} \right)}}{2}} \right]\\&= \frac{{n\left( {n + 1} \right)}}{6}\left[ {\frac{{\left( {n + 1} \right)\left( {n + 2} \right)}}{2}} \right]\\&= \frac{{n{{\left( {n + 1} \right)}^2}\left( {n + 2} \right)}}{{12}}\end{align}\]

Chapter 9 Ex.9.4 Question 8

Find the sum to \(n\) terms of the series whose \({n^{th}}\) term is given by \(n\left( {n + 1} \right)\left( {n + 4} \right)\)

Solution

The given \({n^{th}}\) term is \({a_n} = n\left( {n + 1} \right)\left( {n + 4} \right)\)

Hence,

\[\begin{align}{a_n}&= n\left( {n + 1} \right)\left( {n + 4} \right)\\&= n\left( {{n^2} + 5n + 4} \right)\\&= {n^3} + 5{n^2} + 4n\end{align}\]

Therefore,

\[\begin{align}
{S_n} &= \sum\limits_{k = 1}^n {{a_k}} \\
 &= \sum\limits_{k = 1}^n {{k^3} + 5\sum\limits_{k = 1}^n {{k^2}}  + 4\sum\limits_{k = 1}^n k } \\
& = \frac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4} + \frac{{5n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} + \frac{{4n\left( {n + 1} \right)}}{2}\\
& = \frac{{n\left( {n + 1} \right)}}{2}\left[ {\frac{{n\left( {n + 1} \right)}}{2} + \frac{{5\left( {2n + 1} \right)}}{3} + 4} \right]\\
 &= \frac{{n\left( {n + 1} \right)}}{2}\left[ {\frac{{3{n^2} + 3n + 20n + 10 + 24}}{6}} \right]\\
 &= \frac{{n\left( {n + 1} \right)}}{2}\left[ {\frac{{3{n^2} + 23n + 34}}{6}} \right]\\
& = \frac{{n\left( {n + 1} \right)\left( {3{n^2} + 23n + 34} \right)}}{{12}}
\end{align}\]

Chapter 9 Ex.9.4 Question 9

Find the sum to \(n\) terms of the series whose \({{n}^{th}}\) term is given by \({{n}^{2}}+{{2}^{n}}\).

Solution

The given \({{n}^{th}}\) term is \({a_n} = {n^2} + {2^n}\)

Hence

\[\begin{align}{S_n} &= \sum\limits_{k = 1}^n {{k^2} + {2^k}} \\ &= \sum\limits_{k = 1}^n {{k^2}}  + \sum\limits_{k = 1}^n {{2^k}} \;\;\;\;\;\;\;\;\;\; \ldots \left( 1 \right)
\end{align}\]

Consider \(\sum\limits_{k = 1}^n {{2^k}} = {2^1} + {2^2} + {2^3} + \ldots \)

The above series \({2^1} + {2^2} + {2^3} +  \ldots \) is a G.P with both the first term and common ratio equal to \(2\).

\[\begin{align}\sum\limits_{k = 1}^n {{2^k}} &= \frac{{\left( 2 \right)\left[ {{{\left( 2 \right)}^n} - 1} \right]}}{{2 - 1}}\\&= 2\left( {{2^n} - 1} \right)\;\;\;\;\;\;\;\;\;\;\;\;\; \ldots \left( 2 \right)\end{align}\]

From and \(\left( 2 \right)\), we obtain

\[\begin{align} {{S}_{n}}&=\sum\limits_{k=1}^{n}{{{k}^{2}}}+2\left( {{2}^{n}}-1 \right) \\ & =\frac{n}{6}\left( n+1 \right)\left( 2n+1 \right)+2\left( {{2}^{n}}-1 \right) \end{align}\]

Chapter 9 Ex.9.4 Question 10

Find the sum to \(n\) terms of the series whose \({n^{th}}\) term is given by \({\left( {2n - 1} \right)^2}\) .

Solution

The given \({n^{th}}\) term is \({a_n} = {\left( {2n - 1} \right)^2}\)

Hence,

\[\begin{align}{a_n} &= {\left( {2n - 1} \right)^2}\\&= 4{n^2} - 4n + 1\end{align}\]

Therefore,

\[\begin{align}{S_n} &= \sum\limits_{k = 1}^n {{a_k}} \\&= \sum\limits_{k = 1}^n {\left( {4{k^2} - 4k + 1} \right)} \\&= 4\sum\limits_{k = 1}^n {{k^2}} - 4\sum\limits_{k = 1}^n k + \sum\limits_{k = 1}^n 1 \\&= \frac{{4n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} - \frac{{4n\left( {n + 1} \right)}}{2} + n\\&= \frac{{2n\left( {n + 1} \right)\left( {2n + 1} \right)}}{3} - 2n\left( {n + 1} \right) + n\\&= n\left[ {\frac{{2\left( {2{n^2} + 3n + 1} \right)}}{3} - 2\left( {n + 1} \right) + 1} \right]\\&= n\left[ {\frac{{4{n^2} + 6n + 2 - 6n - 6 + 3}}{3}} \right]\\&= n\left[ {\frac{{4{n^2} - 1}}{3}} \right]\\&= \frac{n}{3}\left( {2n + 1} \right)\left( {2n - 1} \right)\end{align}\]

  
Download Cuemath NCERT App
Related Sections
Related Sections

Learn from the best math teachers and top your exams

Learn from the best

math teachers and top

your exams


Personalized Curriculum
Instant Doubts clarification
Cover latest CBSE Syllabus
Unlimited Mock & Practice tests
Covers CBSE, ICSE, IB curriculum

Instant doubt clearing with Cuemath Advanced Math Program
0