In the verge of coronavirus pandemic, we are providing FREE access to our entire Online Curriculum to ensure Learning Doesn't STOP!

# Ex.11.2 Q1 Perimeter and Area - NCERT Maths Class 7

Go back to  'Ex.11.2'

## Question

Find the area of each of the following parallelograms:

Video Solution
Perimeter And Area
Ex 11.2 | Question 1

## Text Solution

What is known?

Base and height of the parallelogram.

What is unknown?

Area of the parallelogram.

Reasoning:

Since base and height of the parallelogram is given, area of the parallelogram can be calculated by multiplying base with height.

Steps:

(a)

Given,

Base of parallelogram $$= 7 \,\rm cm$$

Height of parallelogram $$= 4 \,\rm cm$$

We know that,

\begin{align}&\text{Area of parallelogram}\\ &= {\rm{Base}} \times {\rm{Height}} \end{align}

\begin{align}&= 7 \times 4\\&= 28{\rm{ }}{\,\rm c{m^2}}\end{align}

(b)

Given,

Base of parallelogram $$= 5 \,\rm cm$$

Height of parallelogram $$= 3 \,\rm cm$$

\begin{align}& \text{Area of parallelogram} \\ &= {\rm{Base}} \times {\rm{Height}} \end{align}

\begin{align}&= 5 \times 3\\& = 15{\rm{ }}{\,\rm c{m^2}}\end{align}

(c)

Given,

Base of parallelogram $$= 2.5 \,\rm cm$$

Height of parallelogram $$= 3.5 \,\rm cm$$

\begin{align}& \text{Area of parallelogram} \\ &= {\rm{Base}} \times {\rm{Height}} \end{align}

\begin{align}&= 2.5 \times 3.5\\&= 8.75{\rm{ }}{\,\rm c{m^2}}\end{align}

(d)

Given

Base of parallelogram $$= 5 \,\rm cm$$

Height of parallelogram $$= 4.8 \,\rm cm$$

\begin{align}& \text{Area of parallelogram} \\ &= {\rm{Base}} \times {\rm{Height}} \end{align}

\begin{align}&= 5 \times 4.8\\&= 24{\rm{ }}{ \, \rm c{m^2}}\end{align}

(e)

Given

Base of parallelogram $$= 2 \,\rm cm$$

Height of parallelogram $$= 4.4 \,\rm cm$$

\begin{align}& \text{Area of parallelogram} \\ &= {\rm{Base}} \times {\rm{Height}} \end{align}

\begin{align}&= 2 \times 4.4\\&= 8.8{\rm{ }}{\,\rm c{m^2}}\end{align}

Learn from the best math teachers and top your exams

• Live one on one classroom and doubt clearing
• Practice worksheets in and after class for conceptual clarity
• Personalized curriculum to keep up with school