Ex.11.2 Q1 Perimeter and Area - NCERT Maths Class 7

Go back to  'Ex.11.2'

Question

Find the area of each of the following parallelograms:

 Video Solution
Perimeter And Area
Ex 11.2 | Question 1

Text Solution

What is known?

Base and height of the parallelogram.

What is unknown?

Area of the parallelogram.

Reasoning:

Since base and height of the parallelogram is given, area of the parallelogram can be calculated by multiplying base with height.

Steps:

(a)

Given,

Base of parallelogram \(= 7 \,\rm cm\)

Height of parallelogram \(= 4 \,\rm cm\)

We know that,

\(\begin{align}&\text{Area of parallelogram}\\ &= {\rm{Base}} \times {\rm{Height}} \end{align}\)

\(\begin{align}&= 7 \times 4\\&= 28{\rm{ }}{\,\rm c{m^2}}\end{align}\)

(b)

Given,

Base of parallelogram \(= 5 \,\rm cm\)

Height of parallelogram \(= 3 \,\rm cm\)

\(\begin{align}& \text{Area of parallelogram} \\ &= {\rm{Base}} \times {\rm{Height}} \end{align} \)

\(\begin{align}&= 5 \times 3\\& = 15{\rm{ }}{\,\rm c{m^2}}\end{align}\)

(c)

Given,

Base of parallelogram \(= 2.5 \,\rm cm\)

Height of parallelogram \(= 3.5 \,\rm cm\)

\(\begin{align}& \text{Area of parallelogram} \\ &= {\rm{Base}} \times {\rm{Height}} \end{align} \)

\(\begin{align}&= 2.5 \times 3.5\\&= 8.75{\rm{ }}{\,\rm c{m^2}}\end{align}\)

(d)

Given

Base of parallelogram \(= 5 \,\rm cm\)

Height of parallelogram \(= 4.8 \,\rm cm\)

\(\begin{align}& \text{Area of parallelogram} \\ &= {\rm{Base}} \times {\rm{Height}} \end{align} \)

\(\begin{align}&= 5 \times 4.8\\&= 24{\rm{ }}{ \, \rm c{m^2}}\end{align}\)

(e)

Given

Base of parallelogram \(= 2 \,\rm cm\)

Height of parallelogram \(= 4.4 \,\rm cm\)

\(\begin{align}& \text{Area of parallelogram} \\ &= {\rm{Base}} \times {\rm{Height}} \end{align} \)

\(\begin{align}&= 2 \times 4.4\\&= 8.8{\rm{ }}{\,\rm c{m^2}}\end{align}\)

  
Learn from the best math teachers and top your exams

  • Live one on one classroom and doubt clearing
  • Practice worksheets in and after class for conceptual clarity
  • Personalized curriculum to keep up with school