In the verge of coronavirus pandemic, we are providing FREE access to our entire Online Curriculum to ensure Learning Doesn't STOP!

Ex.14.3 Q1 Factorization - NCERT Maths Class 8

Go back to  'Ex.14.3'

Question

Carry out the following divisions.

(i)\(\begin{align}\quad 28{x^4} \div 56x\end{align}\)

(ii)\(\begin{align}\quad - 36{y^3} \div 9{y^2}\end{align}\)

(iii)\(\begin{align}\quad 66p{q^2}{r^3} \div 11q{r^2}\end{align}\)

(iv)\(\begin{align}\quad 34{x^3}{y^3}{z^3} \div 51x{y^2}{z^3}\end{align}\)

(v)\(\begin{align}\quad 12{a^8}{b^8} \div ( { - 6{a^6}{b^4}} )\end{align}\)

 Video Solution
Factorisation
Ex 14.3 | Question 1

Text Solution

(i)\(\,28{x^4} \div 56x\)

What is known?

Algebraic expression.

What is unknown?

Division of the algebraic expression.

Reasoning:

Find out factor of \(28{x}^4\) and \(56{x}\) then cancel out common factor of \(28{x}^4\) and \(56{x}\).

Steps:

\(28{x^4}\) can be written as

\(28{x^4} = 2 \times 2 \times 7 \times x \times x \times x \times x\) 

and \(56x\) can be written as

\(56x = 2 \times 2 \times 2 \times 7 \times x\)

Then,

\[\begin{align} & 28{x^4} \div 56x \\ \\ &= \frac{2 \times 2 \times 7 \times x \times x \times x \times x  }{{2 \times 2 \times 2 \times 7 \times x}}\\ &= \frac{{{x^3}}}{2}\\ &= \frac{1}{2}{x^3}\end{align}\]

(ii) \(\,- 36{y^3} \div 9{y^2}\)

What is known?

Algebraic expression.

What is unknown?

Division of the algebraic expression.

Reasoning:

Find out factor of \(-36{y^3}\) and \(9{y^2}\) then cancel out common factor of \(-36{y^3}\) and \(9{y^2}\)

\(- 36{y^3}\) can be written as

\(- 2 \times 2 \times 3 \times 3 \times y \times y \times y\)

and \(9{y^2}\) can be written as

\(3 \times 3 \times y \times y\)

Then,

\[\begin{align} & - 36{y^3} \div 9{y^2}\\ \\ &= \frac{{ - 2 \times 2 \times 3 \times 3 \times y \times y \times y}}{{3 \times 3 \times y \times y}}\\ &= - 4y\end{align}\]

(iii) \(\;66p{q^2}{r^3} \div 11q{r^2}\)

What is known?

Algebraic expression.

What is unknown?

Division of the algebraic expression.

Reasoning:

Find out factor of \(66p{q^2}\) and \(11p{r^2}\) then cancel out common factor of \(66p{q^2}\) and \(11q{r^2}\)

\(66p{q^2}{r^3}\) can be written as

\(2 \times 3 \times 11 \times p \times q \times q \times r \times r \times r\)

and \(11q{r^2}\) can be written as

\(11 \times q \times r \times r\)

Then,

\[\begin{align} & 66p{q^2}{r^3} \div 11q{r^2} \\ \\ &= \frac{{\begin{pmatrix} 2 \times 3 \times 11 \times p \times \\ q \times q \times r \times r \times r \end{pmatrix} }}{{11 \times q \times r \times r}}\\&= 6pqr\end{align}\]

(iv) \(\,34{x^3}{y^3}{z^3} \div 51x{y^2}{z^3}\)

What is known?

Algebraic expression.

What is unknown?

Division of the algebraic expression.

Reasoning:

Find out factor of \(34{x^3}{y^3}{z^3}\) and \(51x{y^2}{z^3}\) then cancel out common factor of \(34{x^3}{y^3}{z^3}\) and \(51x{y^2}{z^3}\)

\(34{x^3}{y^3}{z^3}\) can be written as

\(\begin{pmatrix} 2 \times 17 \times x \times x \times x \times  \\ y \times y \times y \times z \times z \times z \end{pmatrix} \)

and \(51x{y^2}{z^3}\) can be written as

\(3 \times 17 \times x \times y \times y \times z \times z \times z\)

Then,

\[\begin{align}& 34{x^3}{y^3}{z^3} \div 51x{y^2}{z^3} \\ \\&= \frac{{ \begin{pmatrix}2 \times 17 \times x \times x \times x \times \\ y \times y \times y \times z \times z \times z \end{pmatrix} }}{{\begin{pmatrix}3 \times 17 \times x \times \\ y \times y \times z \times z \times z \end{pmatrix} }}\\&= \frac{2}{3}{x^2}y\end{align}\]

(v) \(\;12{a^8}{b^8} \div \left( { - 6{a^6}{b^4}} \right)\)

What is known?

Algebraic expression.

What is unknown?

Division of the algebraic expression.

Reasoning:

Find out factor of \(12{a^8}{b^8}\) and \(- 6{a^6}{b^4}\) then cancel out common factor of \(- 6{a^6}{b^4}\) and \(51x{y^2}{z^3}\)

\(12{a^8}{b^8}\) can be written as

\(2 \times 2 \times 3 \times {a^8} \times {b^8}\)

and \(- 6{a^6}{b^4}\) can be written as

\(- 2 \times 3 \times {a^6} \times {b^4}\)

Then,

\[\begin{align} &12{a^8}{b^8} \div \left( { - 6{a^6}{b^4}} \right) \\ &= \frac{{2 \times 2 \times 3 \times {a^8} \times {b^8}}}{{ - 2 \times 3 \times {a^6} \times {b^4}}}\\&= - 2{a^2}{b^4}\end{align}\]