# Ex.2.3 Q1 Polynomials Solution - NCERT Maths Class 9

Go back to  'Ex.2.3'

## Question

Find the remainder when \begin{align}x^{3}+3 x^{2}+3 x+1\end{align} is divided by

(i) \begin{align} x+1 \end{align}

(ii) \begin{align} x-\frac{1}{2}\end{align}

(iii) \begin{align} x\end{align}

(iv) \begin{align} x+\pi\end{align}

(v)  \begin{align}5+2 x \end{align}

Video Solution
Polynomials
Ex 2.3 | Question 1

## Text Solution

Reasoning:

Let $$p(x)$$ be any polynomial of degree greater than or equal to one and let a be any real number. If a polynomial $$p(x)$$ is divided by \begin{align}x-a\end{align} then the remainder is $$p(a).$$

Steps:

\begin{align}\text{Let}\;\;p(x)=x^{3}+3 x^{2}+3 x+1\end{align}

(i) The root of $$x+1 = 0$$ is $$-1$$

\begin{align} p(-1) &=(-1)^{3}+3(-1)^{2}+3(-1)+1 \\ &=-1+3-3+1=0 \end{align}

Hence by the remainder theorem, $$0$$ is the remainder when \begin{align} x^{3}+3 x^{2}+3 x+1\end{align} is divided by $$x+1.$$ We can also say that $$x+1$$ is a factor of \begin{align}x^{3}+3 x^{2}+3 x+1\end{align} .

(ii) The root of \begin{align}x-\frac{1}{2}=0 \text { is } \frac{1}{2}\end{align}

\begin{align} p\left(\frac{1}{2}\right) &=\left(\frac{1}{2}\right)^{3}+3\left(\frac{1}{2}\right)^{2}+3\left(\frac{1}{2}\right)+1 \\ &=\frac{1}{8}+\frac{3}{4}+\frac{3}{2}+1 \\ &=\frac{1+6+12+8}{8}=\frac{27}{8} \end{align}

Hence by the remainder theorem, \begin{align}\frac{27}{8}\end{align} is the remainder when \begin{align} x^{3}+3 x^{2}+3 x+1\end{align} is divided by \begin{align}x-\frac{1}{2}\end{align}

(iii) The root of \begin{align}x=0 \text { is } 0\end{align}

\begin{align} p(0)&=(0)^{3}+3(0)^{2}+3(0)+1 \\ &=0+0-0+1 \\ &=1 \end{align}

Hence by the remainder theorem, $$1$$ is the remainder when \begin{align} x^{3}+3 x^{2}+3 x+1 \end{align} is divided by $$x .$$

(iv)The root of \begin{align}x+\pi=0 \text { is }-\pi \end{align}

\begin{align} p(-\pi) &=(-\pi)^{3}+3(-\pi)^{2}+3(-\pi)+1 \\ &=-\pi^{3}+3 \pi^{2}-3 \pi+1 \end{align}

Hence by the remainder theorem, \begin{align} -\pi^{3}+3 \pi^{2}-3 \pi+1\end{align}  is the remainder when \begin{align}x^{3}+3 x^{2}+3 x+1\end{align} is divided by \begin{align}x+\pi\end{align} .

(v) The root of \begin{align}5+2 x=0 \text { is } \frac{-5}{2}\end{align}

\begin{align}{p\left( {\frac{{ - 5}}{2}} \right)}&{ = \,\,\left[ \begin{array}{l}{\left( {\frac{{ - 5}}{2}} \right)^3} + 3{\left( {\frac{{ - 5}}{2}} \right)^2}+\\ 3\left( {\frac{{ - 5}}{2}} \right) + 1\end{array} \right]}\\&{ = \frac{{ - 125}}{8} + \frac{{75}}{4} + \frac{{ - 15}}{2} + 1}\\&{ = \frac{{ - 125 + 150 - 60 + 8}}{8}}\\&{ = \frac{{ - 185 + 158}}{8}}\\&{ = \frac{{ - 27}}{8}}\end{align}

Hence by remainder theorem, \begin{align}\frac{-27}{8}\end{align} is the remainder when \begin{align}x^{3}+3 x^{2}+3 x+1\end{align} is divided by \begin{align}5+2 x\end{align} .

Learn from the best math teachers and top your exams

• Live one on one classroom and doubt clearing
• Practice worksheets in and after class for conceptual clarity
• Personalized curriculum to keep up with school