Ex.2.4 Q1 fractions-and-decimals Solutions-Ncert Maths Class 7

Go back to  'Ex.2.4'

Question

 Find:

(i) \(\begin{align} 12 \div \frac{3}{4}\end{align} \)

(ii) \(\begin{align} 14 \div \frac{5}{6}\end{align} \)

(iii) \(\begin{align} 8 \div \frac{7}{3}\end{align} \)

(iv) \(\begin{align} 4 \div \frac{8}{3}\end{align} \)

(v) \(\begin{align} 3 \div 2\frac{1}{3}\end{align} \)

(vi) \(\begin{align} 5 \div 3\frac{4}{7}\end{align} \)

Text Solution

What is known?

Expression.

What is unknown?

Value of the expression.

Reasoning:

To divide fractions take the reciprocal of the divisor and multiply it with dividend.

Steps:

(i) \(\begin{align} 12 \div \frac{3}{4}\end{align} \)

\[\begin{align}&= \frac{{12}}{1} \times \frac{4}{3}\\&= 4 \times 4\\& = 16\end{align}\]

(ii) \(\begin{align} 14 \div \frac{5}{6}\end{align} \)

\[\begin{align}&= \frac{{14}}{1} \times \frac{6}{5}\\&= \frac{{84}}{5}({\text{ improper fraction }})\end{align}\]

Converting into mixed fraction, we get \(\begin{align}= 16\frac{4}{5} \end{align}\)

(iii) \(\begin{align} 8 \div \frac{7}{3}\end{align} \)

\[\begin{align}&= \frac{8}{1} \times \frac{3}{7}\\&= \frac{{24}}{7}{\text{ (improper fraction) }}\end{align}\]

Converting into mixed fraction, we get \(\begin{align} = 3\frac{3}{7} \end{align}\)

(iv) \(\begin{align} 4 \div \frac{8}{3}\end{align} \)

\[\begin{align}&= \frac{4}{1} \times \frac{3}{8}\\&= \frac{{12}}{8}{\text{ (improper fraction) }}\end{align}\]

Converting into mixed fraction, we get \(\begin{align} = 1\frac{1}{2}\end{align}\)

(v) \(\begin{align} 3 \div 2\frac{1}{3}\end{align} \)

\[\begin{align}&= 3 \div \frac{7}{3}\\&= \frac{3}{1} \times \frac{3}{7}\\&= \frac{9}{7}({\text{ improper fraction }})\end{align}\]

Converting into mixed fraction, we get \(\begin{align} = 1\frac{2}{7} \end{align}\)

(vi) \(\begin{align} 5 \div 3\frac{4}{7}\end{align} \)

\[\begin{align}&= 5 \div \frac{{25}}{7}\\&= \frac{5}{1} \times \frac{7}{{25}}\\&= \frac{7}{5}({\text{ improper fraction }})\end{align}\]

Converting into mixed fraction, we get \(\begin{align} = 1\frac{2}{5} \end{align}\)

  
Learn from the best math teachers and top your exams

  • Live one on one classroom and doubt clearing
  • Practice worksheets in and after class for conceptual clarity
  • Personalized curriculum to keep up with school