# Ex 2.5 Q1 Fractions and Decimals - NCERT Maths class 7

Go back to  'Ex.2.5'

## Question

What is greater?

i) $$0.5 \rm \,or\,0.05$$

ii) $$0.7 \rm \,or\,0.5$$

iii) $$7 \rm \,or\,0.7$$

iv) $$1.37 \rm \,or\,1.49$$

v) $$2.03 \rm \,or\,2.30$$

vi) $$0.8 \rm \,or\,0.88$$

Video Solution
Fractions And Decimals
Ex 2.5 | Question 1

## Text Solution

What is known?

Decimal numbers

What is unknown?

Which decimal number is greater.

Reasoning:

First convert these decimals into fractions then convert them into like fraction, now we can simply find out which fraction/decimal is greater.

Steps:

(i) $$0.5$$ or $$0.05$$

\begin{align}0.5 \quad&\boxed{\;\;}\quad 0.05\\\\\frac{5}{10} \quad &\boxed{\;\;} \quad \frac{5}{100}\end{align}

Converting them into like fractions, we get

\begin{align}\frac{5\times 10}{10\times 10} &\quad\boxed{\;\;}\quad \frac{5\times 1}{100\times 1}\\\\\frac{50}{100} &\quad\boxed{\;\;}\quad \frac{50}{100}\\\\\frac{50}{100} &\quad\boxed{\gt}\quad \frac{5}{100}\end{align}

Therefore$$,0.5 > 0.05.$$

ii) $$0.7$$ or $$0.5$$

\begin{align}~0.7\, \quad\boxed{\;\;}\quad 0.5\\\\\frac{7}{10} \quad\boxed{\;\;}\quad \frac{5}{10} \\\\ \frac{7}{10} \quad\boxed{\gt}\quad \frac{5}{10}\end{align}

Therefore,$$0.7$$ $$>$$ $$0.5$$.

iii) $$7$$ or $$0.7$$

\begin{align}\text{7} \quad\boxed{\;\;}\quad \frac{7}{10}\\\\=\frac{7\times 10}{1\times 10} \quad\boxed{\;\;}\quad \frac{7}{10}\\\\\frac{70}{10} \quad\boxed{\gt}\quad \frac{7}{10}\end{align}

Therefore, $$7 > 0.7.$$

$$7$$ is greater.

iv) $$1.37$$ or $$1.49$$

\begin{align}&=1\text{.37} \quad\boxed{\;\;}\quad \text{1}\text{.49}\\\\&=\frac{137}{100} \quad\boxed{\;\;}\quad \frac{149}{100}\\\\&=\frac{137}{100} \quad\boxed{\lt}\quad \frac{149}{100}\end{align}

Therefore, $$1.37$$ $$<$$$$1.49$$

$$1.49$$ is greater.

v) $$2.03$$ or $$2.30$$

\begin{align}\text{2}\text{.03} \quad\boxed{\;\;}\quad \text{2}\text{.30} \\\\\frac{203}{100} \quad\boxed{\;\;}\quad \frac{230}{100}\\\\\frac{203}{100} \quad\boxed{\lt}\quad \frac{230}{100}\end{align}

Therefore, $$2.03$$ $$<$$ $$2.30$$

$$2.30$$ is greater.

vi) $$0.8$$ or $$0.88$$

\begin{align}\frac{08}{10} \quad\boxed{\;\;}\quad \frac{088}{100}\end{align}

Converting them into like fractions, we get

\begin{align}\frac{8\times 10}{10\times 10} \quad\boxed{\;\;}\quad \frac{88}{100}\\\\\frac{80}{100} \quad\boxed{\lt}\quad \frac{88}{100} \end{align}

Therefore, $$0.8 < 0.88.$$

$$0.88$$ is greater.

Learn from the best math teachers and top your exams

• Live one on one classroom and doubt clearing
• Practice worksheets in and after class for conceptual clarity
• Personalized curriculum to keep up with school