In the verge of coronavirus pandemic, we are providing FREE access to our entire Online Curriculum to ensure Learning Doesn't STOP!

# Ex.6.5 Q13 Triangles Solution - NCERT Maths Class 10

Go back to  'Ex.6.5'

## Question

$$D$$ and $$E$$ are points on the sides $$CA$$ and $$CB$$ respectively of a triangle $$ABC$$ right angled at $$C$$. Prove that  \begin{align} A E^{2}+B D^{2}=A B^{2}+D E^{2}\end{align}.

Diagram

Video Solution
Triangles
Ex 6.5 | Question 13

## Text Solution

Reasoning:

In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Steps:

In $$\Delta ABC,\,\,\angle ABC={{90}^{\circ}}$$

$$D$$, $$E$$ are points on $$AC$$ and $$BC$$

Join $$AE$$, $$DE$$ and $$BD$$

In $$\Delta ACE$$ ,

\begin{align} AE{}^{2} & =A{{C}^{2}}+C{{E}^{2}} \;\;\dots (1) \\ & [ \text { Pythagoras } \text{ theorem } ] \end{align}

In $$\Delta DCB$$

\begin{align} BD{}^{2}=C{{D}^{2}}+B{{C}^{2}} \;\;\dots (2) \end{align}

Adding $$(1)$$ and $$(2)$$

\begin{align} & AE{}^{2}+B{{D}^{2}} \\ & \;\;= \! A{C}^{2}\!+ \! CE{}^{2} \! +\! C{D}^{2} \!\!+ \! B{{C}^{2}} \\ & \;\;= \! A{C}^{2} \! + \! BC{}^{2} \! + \! E{{C}^{2}} \! + \! C{{D}^{2}} \\ & \;\;=A{{B}^{2}}+DE{}^{2} \\ \end{align}

\begin{align} & \text{In}\,\,\Delta ABC,\,\,\,\,\, \angle C={{90}^{\circ}} \\ & \Rightarrow A{{C}^{2}}+BC{}^{2}=A{{B}^{2}} \\\\ & \qquad \qquad \text{and} \\\\ & \text{In}\,\,\Delta CDE,\,\,\angle DCE={{90}^{\circ}} \\ & \Rightarrow C{{D}^{2}}+C{{E}^{2}}=D{{E}^{2}}\\ &\Rightarrow A{{E}^{2}}+BD{}^{2}=A{{B}^{2}}+D{{E}^{2}}\ \end{align}

Learn from the best math teachers and top your exams

• Live one on one classroom and doubt clearing
• Practice worksheets in and after class for conceptual clarity
• Personalized curriculum to keep up with school