# Ex.2.5 Q16 Polynomials Solution - NCERT Maths Class 9

## Question

What are the possible expressions for the dimensions of the cuboids whose volume are given below?

(i). Volume: \(3 x^{2}-12 x\)

(ii). Volume: \(12 k y^{2}+8 k y-20 k \)

## Text Solution

**Reasoning:**

(i) Volume of a cubiod = length \(\times \) breadth \(\times \) height

**What is known?**

Volume of cubiod.

**What is unknown?**

Length, breadth and height of the cuboid.

**Steps:**

Volume of a cubiod = length \(\times \) breadth \(\times \) height

Hence we shall express the given polynomial as product of three expression.

\(3 x^{2}-12 x=3 x(x-4)\)

Length \(= 3\), breadth \(= x\), height \(= x-4\)

Length \(= 3\), breadth \(= x-4\), height \(= x\)

Length \(= x\), breadth \(= 3\), height \(= x-4\)

Length \(= x-4\), breadth \(= x-4\), height \(= 3\)

Length \(= x-4\), breadth \(= 3\), height \(= x\)

Length \(= x-4\), breadth \(= 3\), height\(= x\)

(ii)

**What is known?**

Volume of cubiod.

**What is unknown?**

Length, breadth and height of the cuboid.

**Steps: **

Volume of a cubiod = length \(\times \) breadth \(\times \) height

Hence, we shall express the given polynomial as product of three factors

\(12 k y^{2}+8 k y-20 k=4 k\left(3 y^{2}+2 y-5\right)\)

Now taking \(3 y^{2}+2 y-5\),

find\( 2\) numbers \(p, q\) such that:

i. \(p+q=\)co-efficient of \(y \)

ii .\(p q=\)co-efficient of \(y^{2}\) and the constant term.

\(p+q=2\)(co-efficient of y)

\(p q=3 \times-5=-15\)(co-efficient of \(y^{2}\) and the constant term.)

By trial and error method, we get

\(p = 5, q = -3.\)

Now splitting the middle term of the given polynomial,

\[\begin{align} 3 y^{2}+2 y-5 &=3 y^{2}+5 y-3 y-5 \\ &=3 y^{2}-3 y+5 y-5 \\ &=3 y(y-1)+5(y-1) \\ &=(3 y+5)(y-1)\end{align}\]

Volume \(=4 k(y-1)(3 y+5) \)

Length \(=4 k\), breadth \( =y-1\), height \(=3 y+5\)

Length \(=4 k\), breadth \(=3 y+5\), height\( =y-1\)

Length \( =y-1\), breadth \(=4 k\), height \(=3 y+5\)

Length \( =y-1\), breadth \( =3y+5 ,\) height \(=4 k\)

Length \(=3 y+5\), breadth \(=4 k\), height \( =y-1\)

Length \(=3 y+5\), breadth\( =y-1\) , height \(=4 k\)