# Ex.6.3 Q16 Triangles Solution - NCERT Maths Class 10

Go back to  'Ex.6.3'

## Question

If AD and PM are medians of triangles ABC and PQR, respectively where $$\Delta ABC\sim\Delta PQR$$, prove that \begin{align}\frac{AB}{PQ}=\frac{AD}{PM} \end{align}·

Diagram

Video Solution
Triangles
Ex 6.3 | Question 16

## Text Solution

#### Reasoning:

As we know if one angle of a triangle is equal to one angle of the other triangle and the sides including these angles are proportional, then the two triangles are similar.

This is referred as SAS (Side–Angle–Side) Criterion for two triangles.

#### Steps:

\begin{align}&\Delta A B C \sim \Delta P Q R\\\\\Rightarrow \quad&\angle A B C=\angle P Q R \\ &\text{(corresponding angles)} \dots(1)\\\\ \Rightarrow \quad &\;\;\;\,\frac{A B}{P Q}=\frac{B C}{Q R} \\& \text{(corresponding sides)} \\\\\Rightarrow \quad & \;\;\;\,\frac{A B}{P Q}=\frac{B C / 2}{Q R / 2} \\\\\Rightarrow \quad & \;\;\;\,\frac{AB}{PQ}=\frac{BD}{QM} \\ & \begin{bmatrix}D\text{ and }M \text{are mid points } \\ \text{of } BC \text{ and }QR\end{bmatrix} \dots(2) \end{align}

In $$\Delta ABD,\Delta PQM$$

\begin{align}\angle A B D=\angle P Q M\;\;\dots \text{(from 1)}\end{align}

\begin{align}\frac{A B}{P Q}=\frac{B D}{Q M}\;\;\dots \text{(from 2)}\end{align}

\begin{align}\Rightarrow \quad&\Delta A B D \sim \Delta P Q M \\& \text{(SAS Criterion)}\end{align}

\begin{align}\Rightarrow \quad & \frac{A B}{P Q}=\frac{B D}{Q M}=\frac{A D}{P M}\\& \text{(Corresponding sides)}\end{align}

\begin{align} \Rightarrow \frac{A B}{P Q}&=\frac{A D}{P M}\end{align}

Learn from the best math teachers and top your exams

• Live one on one classroom and doubt clearing
• Practice worksheets in and after class for conceptual clarity
• Personalized curriculum to keep up with school