Ex.1.4 Q2 Integers Solution - NCERT Maths Class 7

Go back to  'Ex.1.4'

Question

Verify that $$a ÷ (b + c) ≠ (a ÷ b) + (a ÷ c)$$ for each of the following values of $$a, b$$ and $$c.$$

(a) $$a=12,b=-4,c=2$$

(b) $$a=\left( -10 \right),\,\,b=1,\,\,c=1$$

Video Solution
Integers
Ex 1.4 | Question 2

Text Solution

Steps:

Let,

$a\div \left( b+c \right)\ne \left( a\div b \right)+\left( a\div c \right)\dots\left( 1 \right)$

a) $$a = 12, b = –4, c = 2$$

Take L.H.S, $$a \div(b+c)$$

Putting the values of $$a, b$$ and $$c,$$ we get

\begin{align} a \div (b+c) &=12\div \left( -4+2 \right) \\ &=12\div \left( -2 \right) \\ &=12\times \frac{1}{\left( -2 \right)} \\ & =\frac{12}{\left( -2 \right)} \\ & =-6 \\ \end{align}

Now take R.H.S

\begin{align}&(a \div b)+(a \div c) \\ &\left[ 12\div (-4) \right]+\left( 12\div 2 \right) \\ \ \ \ &=\left[ 12\times \frac{(-1)}{4} \right]+\left( 12\times \frac{1}{2} \right) \\ &=\frac{\left( -12 \right)}{4}+\left( \frac{12}{2} \right) \\ & =-3+6 \\ & =3 \\ \end{align}

Putting the values of L.H.S and R.H.S in equation ($$1$$), we get

\begin{align} a(b+c)&\ne (a \div b)+(a \div c) \\ 6&\ne 3 \\ \text{ L}\text{.H}\text{.S }&\ne \text{ R}\text{.H}\text{.S } \\\end{align}

Hence verified.

b) $$a =(-10),\;b=1,\;c=1$$

Take L.H.S, $$a (b + c)$$

Putting the values of $$a, b$$ and $$c,$$ we get

\begin{align} &=(-10)(1+1) \\ &=(-10)(2) \\ &=(-10) \times \frac{1}{2} \\ &=-5 \\\end{align}

Take R.H.S,$$(a \div b)+(a \div c)$$

Putting the values of $$a, b$$ and $$c,$$ we get

\begin{align}&= [(–10) ÷1] + [(–10) ÷1]\\ &= [(–10) × ] + [(–10) × ]\\ &= (–10) + (–10)\\ &= – 10 –10\\ &= –20\end{align}

Putting the values of L.H.S and R.H.S in equation ($$1$$), we get

\begin{align} a ÷ (b + c) &≠ (a ÷ b) + (a ÷ c)\\ –5& ≠ –20\end{align}

L.H.S $$≠$$ R.H.S

Hence verified

Learn from the best math teachers and top your exams

• Live one on one classroom and doubt clearing
• Practice worksheets in and after class for conceptual clarity
• Personalized curriculum to keep up with school