# Ex.13.2 Q2 Exponents and Powers Solutions - NCERT Maths Class 7

Go back to  'Ex.13.2'

## Question

Simplify and express each of the following in exponential form:

(i) \begin{align}\frac{{{2^3} \times {3^3} \times 4}}{{3\,\times 32}}\end{align}

(ii) \begin{align} \left[ {\left( {{5^2}} \right)^3 \times {5^4}} \right] \div{5^7}\end{align}

(iii) \begin{align} {25^4} \div\, {5^3}\end{align}

(iv) \begin{align} \frac{{3 \times {7^2} \times {{11}^8}}}{{21 \times {{11}^3}}}\end{align}

(v) \begin{align} \frac{{{3^{\bf{7}}}}}{{{3^4} \times {3^3}}}\end{align}

(vi) \begin{align} {2^0} + {3^0} + {4^0}\end{align}

(vii) \begin{align} {2^0} \times {3^0} \times {4^0}\end{align}

(viii) \begin{align} \left( {{3^0} + {2^0}} \right) \times {5^0}\end{align}

(ix) \begin{align} \frac {{{2^8} \times {a^5}}}{{4^3} \times {a^3}}\end{align}

(x) \begin{align} \frac{a^5}{a^3} \times a^8 \end{align}

(xi) \begin{align} \frac{{{4^5} \times {a^8}{b^3}}}{{4^5} \times \,{a^5}{b^2}}\end{align}

(xii) \begin{align} {\left( {{2^3} \times 2} \right)^2}\end{align}

Video Solution
Exponents And Powers
Ex 13.2 | Question 2

## Text Solution

What is Known?

(i) \begin{align}\frac{{{2^3} \times {3^3} \times 4}}{{3 \times 32}}\end{align}

(ii) \begin{align} \left[ {\left( {{5^2}} \right) \times {5^4}} \right] \div{5^7}\end{align}

(iii) \begin{align} {25^4} \div {5^3}\end{align}

(iv) \begin{align} \frac{{3 \times {7^2} \times {{11}^8}}}{{21 \times {{11}^3}}}\end{align}

(v) \begin{align} \frac{{{3^{\bf{7}}}}}{{{3^4} \times {3^3}}}\end{align}

(vi) \begin{align} {2^0} + {3^0} + {4^0}\end{align}

(vii) \begin{align} {2^0} \times {3^0} \times 4\end{align}

(viii) \begin{align} \left( {{3^0} + {2^0}} \right) \times {5^0}\end{align}

(ix) \begin{align} \frac {{{2^8} \times {a^5}}}{{4^3} \times {a^3}}\end{align}

(x) \begin{align} \frac{{{{\rm{a}}^5}}}{{{\rm{a}}^3}} \times \,{{\rm{a}}^8}\end{align}

(xi) \begin{align} \frac{{{4^5} \times {a^8}{b^3}}}{{4^5} \times \,{a^5}{b^2}}\end{align}

(xii) \begin{align} {\left( {{2^3} \times 2} \right)^2}\end{align}

What is unknown?

Exponential form by using laws of exponents.

Reasoning:

To solve this question, you must remember the laws of exponents given in question $$1$$.

Steps:

(i) \begin{align}\frac{{{2^3} \times {3^3} \times 4}}{{3\,\times 32}}\end{align}

\begin{align}&= \frac{{{2^3} \! \times \! {3^4} \! \times \! {2^2}}}{{3 \! \times \! {2^5}}} &a^m \!\times\! a^n\!=\!a^{m + n}\\&= \frac{{{2^{3 + 2}} \! \times \! {3^4}}}{{{3^1} \! \times \! {2^5}}}&a^m\! \div\! a^n\!=\!a^{m -n}\\&= \frac{{{2^5} \! \times \! {3^{4 - 1}}}}{{3 \! \times \! {2^5}}}\\&= {3^3}\end{align}

(ii) \begin{align} \left[ {\left( {{5^2}} \right)^3 \times {5^4}} \right] \div{5^7}\end{align}

\begin{align}&= \! \left[ {{5^6} \! \times \! {5^4}} \right] \! + \! {5^7} &a^m \! \times \! a^n \!=\! a^{m + n}\\&= \! \left[ {{5^{6 + 4}}} \right] \! \div \! {5^7} & a^m \! \div \! a^n \! =\! a^{m - n}\\&= \! [{5^{10}}] \! \div \! {5^7}\\ &= \! \left[ {{5^{10 - 7}}} \right]\\&= \! {5^3}\end{align}

(iii) \begin{align} {25^4} \div\, {5^3}\end{align}

\begin{align}&= {\left( {{5^2}} \right)^4} \div {5^3}\\&= {5^8} \div {5^3}\\&= {5^{8 - 3}} = {5^5}\end{align}

(iv) \begin{align}\frac{{3{\rm{ }} \times {7^2} \times {\rm{ }}{{11}^8}}}{{21\,\, \times {\rm{ }}{{11}^3}}}\end{align}

\begin{align}&= \!\frac{{3 \! \times \! {7^2} \! \times \! {{11}^8}}}{{3 \! \times \! 7 \! \times \! {{11}^3}}}\\&=\!\frac{{{7^2} \! \times \! {{11}^8}}}{{7 \! \times \! {{11}^3}}}\\&=\! {7^{2 - 1}} \! \times \! {\rm{ }}{11^{8 - 3}} \quad a^m \! \div \!a^n \!=\!a^{m - n}\\&=\!7 \! \times \! {11^5}\end{align}

(v) \begin{align}\frac{{{3^7}}}{{{3^4} \times {3^3}}}\end{align}

\begin{align}&=\!\!\frac{{{3^7}}}{{{3^{4 + 3}}}} \\&=\!\frac{{{3^7}}}{{{3^7}}} &\left[ a^m \! \times \! a^n \!= \! a^{m + n} \right]\\&=\! {3^{7 - 7}} &\left[ a^m \! \div \! a^n \!=\! a^{m - n} \right]\\&=\!{3^0}\\&=\!1\end{align}

(vi) \begin{align}{2^0} + {3^0} + {4^0}\end{align}

\begin{align}&= 1 + 1 + 1 \qquad a^0 = 1\\&= 3\end{align}

(vii) \begin{align}{2^0} \times {3^0} \times {4^0}\end{align}

\begin{align}&= 1 \times 1 \times 1 \qquad a^0 = 1\\&= 1\end{align}

(viii)  \begin{align}\left( {{3^0} + {2^0}} \right) \times {5^0} \end{align}

\begin{align}&= (1 + 1) \times 1 & & a^0 = 1\\&= 2 \times 1 \\&= 2\end{align}

(ix) \begin{align}\frac{{{2^8} \times {a^5}}}{{{4^3} \times {a^3}}}\end{align}

\begin{align}&= \! \frac{{{2^8} \! \times \! {a^5}}}{{{{\left( 2 \right)}^6} \! \times \! {a^3}}} & & a^m \div a^n \! = \! a^{m - n}\\&= \! {2^{8 - 6}} \! \times \! {a^{5 - 3}}\\ &= \! {2^2} \! \times \! {a^2}\\&= \! {(2a)^2}\end{align}

(x) \begin{align}\left( {\frac{{{a^5}}}{{{a^3}}}} \right) \times {a^8}\end{align}

\begin{align} &= \! \left( {{a^{5 - 3}}} \right) \! \times \! {a^8}& a^m \! \div \! a^n \! = \! a^{m - n}\\&= \! {a^2} \! \times \! {a^8}\\&= \! {a^{2 + 8}}& a^m \! \times a^n \! = \! a^{m + n}\\&= \! {a^{10}}\end{align}

(xi)  \begin{align}\frac{{{4^5} \times {a^8}{b^3}}}{{{4^5} \times {a^5}{b^2}}}\end{align}

\begin{align}&=\!{4^{5 - 5}}\!\times\!{a^{8 - 5}}\!\times\!{b^3} \quad a^m \! \div \!a^n\!=\!a^{m - n}\\&=\!{4^0}\!\times\!{a^3}\!\times\!{b^{3 - 2}}\, \quad\,\,\,\,\,a^0 = 1\\&=\!1\!\times\!{a^3} \!\times\! b \\&=\! {a^3}b\end{align}

(xii)\begin{align}{\left( {{2}^{3}}\times 2 \right)}^{2}\end{align}

\begin{align}& = \! {{\left( {{2}^{3+1}} \right)}^{2}}\\&=\!{{\left( {{2}^{4}} \right)}^{2}} \\&={{2}^{4\times 2}} \qquad \left( a^m \right)^n \!=\! a^{mn} \\ & = \! {{2}^{8}} \end{align}

Learn from the best math teachers and top your exams

• Live one on one classroom and doubt clearing
• Practice worksheets in and after class for conceptual clarity
• Personalized curriculum to keep up with school