# Ex.5.2 Q2 Arithmetic Progressions Solution - NCERT Maths Class 10

Go back to  'Ex.5.2'

## Question

Choose the correct choice in the following and justify:

i) $$30^{th}$$ term of the \begin{align}\text{AP: 10,7,4……. is}\end{align}

a) $$97$$

b) $$77$$

c) $$-77$$

d) $$-87$$

ii) $$11^{th}$$ term of \begin{align}\text{AP: }-3, - \frac{1}{2},2\, \rm{is:}\end{align}

a) $$28$$

b) $$22$$

c) $$– 38$$

d) $$- 48$$

Video Solution
Arithmetic Progressions
Ex 5.2 | Question 2

## Text Solution

Reasoning:

$$n^{th}$$ term of a AP is \begin{align}\,{a_n} = a + \left( {n - 1} \right)d\end{align}

i)  What is  Known?

The AP.

What is Unknown?

$$30^{th}$$ term of the AP.

Steps:

The AP is $$10,7,4, …..$$

\begin{align}a = 10\end{align}

Common difference

\begin{align} &=a_{2}-a_{1} \\ &=7-10 \\ &=-3 \end{align}

\begin{align}{a_n} &= a + (n - 1)d\\{a_{30}} &= 10 + (30 - 1)( - 3)\\ &= 10 + (29)( - 3)\\ &= 10 - 87\\ &= - 77\end{align}

The correct option is \begin{align}c = -77\end{align}

$$30^{th}$$ term is \begin{align}-77.\end{align}

ii)  What is  Known?

The AP.

What is Unknown?

$$11^{th}$$ term of the AP.

Steps:

The AP is -3,\begin{align} - \frac{1}{2}\end{align} , $$2$$

Common difference

\begin{align}d &=a_{2}-a_{1} \\ &=-\frac{1}{2}-(-3) \\ &=-\frac{1}{2}+3 \\ &=\frac{-1+6}{2} \\ d &=\frac{5}{2} \end{align}

\begin{align}{a_{11}} &= - 3 + (11 - 1)\frac{5}{2}\\ &= - 3 + 10 \times \frac{5}{2}\\ &= - 3 + 25\\{a_{11}} &= 22\end{align}

The correct option is B. $$11^{th}$$ term is $$22.$$

Learn from the best math teachers and top your exams

• Live one on one classroom and doubt clearing
• Practice worksheets in and after class for conceptual clarity
• Personalized curriculum to keep up with school