Ex. 6.6 Q2 Triangles Solution - NCERT Maths Class 10

Go back to  'Ex.6.6'


In Fig. below, \(D\) is a point on hypotenuse \(AC\) of \(\Delta ABC\), such that  \(BD \bot AC,\;DM \bot BC{\text{ and }}DN \bot AB.\)

Prove that:

\(\begin{align} \left( {\text{a}} \right)\,\,D{M^2} = DN.MC\\ \left( {\text{b}} \right)\,\,\,D{N^2} = DM.AN \end{align}\)

Text Solution


\(AA\) similarity criterion \(,BPT.\)


(i) In quadrilateral \(DMBN\)    
               \( DM \bot BC\;\) and \(\;DN \bot AB\) 
               \(DMBN\) is a rectangle.
               \(DM = BN\) and \(DN = MB\) ...... (i)

In \(\Delta DCM\)
\[\begin{align} &\angle DCM + \angle DMC + \angle CDM = {180^ \circ }\\& \angle DCM + {90^ \circ } + \angle CDM = {180^ \circ }\\& \angle DCM + \angle CDM = {90^ \circ } .... \rm\left (ii \right)\end{align}\]
But \(\angle CDM + \angle BDM = {90^ \circ }.....\rm{}\left( {iii} \right) \)
Since \(\,BD \bot AC\) 

From (ii) and (iii)
\[\begin{align}\angle D C M+\angle B D M \ldots (\mathrm{iv})\end{align}\]

In \(\Delta BDM\)
                  \(\begin{equation} \begin{array}{l}{\angle D B M+\angle B D M=90^{\circ}}\ldots (\mathrm{v}) \\ {\text{Since}\;,D M \perp B C }\end{array} \end{equation}\)

From (iii) and (v) 

\(\begin{equation} \angle C D M=\angle D B M \ldots \rm{(vi)} \end{equation}\)

Now in \(\begin{equation} \Delta D C M\;\text{and}\;\Delta D B M \end{equation}\)

\(\begin{equation} \Delta D C M \sim \Delta D B M \end{equation}\)           (From (iv) and (vi), \(AA\) criterion) 
\(\begin{align} \frac{D M}{BM}=\frac{M C}{DM} \end{align}\)                   (Corresponding sides are in same ratio) 

\(\begin{align} DM^{2}&=B M \cdot M C \\ DM^{2}&=D N \cdot M C\qquad [\text{from (i) } D N=B M]\end{align}\)

(ii) In \(\Delta B D N\)

\(\begin{align}\angle BDN + \angle DBN &= {90^ \circ }\left( {\rm{Since}\,\,DN \bot AB} \right)...\left( \rm{vii} \right)\\ {\rm{But}}\,\,\angle ADN + \angle BDN &= {90^ \circ }\left( {\rm{Since}\,\,BD \bot AC} \right)...\left( \rm{viii} \right)\end{align}\)

From (vii) and (viii) 

\(\angle D B N=\angle A D N \dots \rm{(ix)} \)

In \(\Delta A D N \)
\[\begin{align}{\angle DAN+\angle ADN} &= {90^{\circ}(\text { Since } D N \perp A B) \ldots (\mathrm{x})} \\ {\mathrm{But}\, \angle BDN+\angle ADN}& = {90^{\circ}(\text { Since } BD \perp A C)}\ldots \rm{(xi)}\end{align}\]

From (xi) and (x) 
            \(\angle D A N=\angle B D N \ldots (\mathrm{xii})\)

Now in \(\Delta B D N\;\text{and}\; \Delta D A N\)

\(\Delta B D N \sim \Delta \mathrm{DAN}\)            (From (ix) and (xii), \(AA\) criterion) 

\(\begin{align}\frac{B N}{D N}=\frac{D N}{A N}\end{align}\)                   ( Corresponding sides are in same ratio)
\[\begin{align}{D N^{2}}&={B N \cdot A N} \\ {D N^{2}}&={D N \cdot A N\qquad[\text{from (i)B N=D M}]}\end{align}\]

Learn math from the experts and clarify doubts instantly

  • Instant doubt clearing (live one on one)
  • Learn from India’s best math teachers
  • Completely personalized curriculum

Frequently Asked Questions

What are Class 10 NCERT Exemplars?
While getting good scores in school tests is a desirable outcome, it is not a reliable indicator of how strong your child’s math foundation really is. Many students who score well in school exams in their earlier years, might struggle with math in higher grades because of a weak foundation. At Cuemath, we evaluate your child’s grasp of math fundamentals, and take corrective actions immediately. Also, your child may have limited exposure in their school, and in most cases, may not feel challenged to learn more. Cuemath's customised learning plan ensures your child is challenged with varied difficulty levels of questions at every stage.
What is the difference between CBSE and NCERT syllabus for Class 10?
How will Class 10 NCERT books help in exam preparation?
How will Class 10 NCERT books help you understand basic math concepts?
Which is the best video solution for the class 10 maths NCERT?