# Ex.14.3 Q3 Factorization - NCERT Maths Class 8

Go back to  'Ex.14.3'

## Question

Work out the following divisions.

(i) \begin{align} \quad (10x - 25) \div 5\end{align}

(ii) \begin{align}\quad (10x - 25) \div (2x - 5)\end{align}

(iii) \begin{align}\quad 10y(6y + 21) \div 5(2y + 7)\end{align}

(iv) \begin{align}\quad 9{x^2}{y^2}(3z - 24) \div 27xy(z - 8)\end{align}

(v) \begin{align}\quad \begin{Bmatrix} 96abc(3a - 12)(5b - 30) \\ \div 144(a - 4)(b - 6) \end{Bmatrix} \end{align}

Video Solution
Factorisation
Ex 14.3 | Question 3

## Text Solution

(i) $$\;(10x - 25) \div 5$$

What is known?

Algebraic expression.

What is unknown?

Division of the algebraic expression.

Reasoning:

Find out factor of $$(10x-25)$$ then cancel out common factors of $$(10x-25)$$ and $$5$$

Steps:

Factorising $$(10x-25)$$, We get

\begin{align}(10x - 25) &= 5 \times 2 \times x - 5 \times 5\\&= 5\left( {2x - 5} \right)\end{align}

\begin{align}(10x - 25) \div 5 &= \frac{{5(2x - 5)}}{5}\\& = 2x - 5\end{align}

(ii)  $$(10x - 25) \div (2x - 5)$$

What is known?

Algebraic expression.

What is unknown?

Division of the algebraic expression.

Reasoning:

Find out factor of $$(10x-25)$$ then cancel out common factors of $$(10x-25)$$ and $$(2x-5)$$.

Steps:

Factorising $$(10x-25)$$, We get

\begin{align}(10x - 25) &= 5 \times 2 \times x - 5 \times 5\\&= 5\left( {2x - 5} \right)\end{align}

\begin{align} & (10x - 25) \div (2x -5) \\ &=\frac{{5(2x - 5)}}{{2x - 5}}\\&= 5\end{align}

(iii) $$\;10y(6y + 21) \div 5(2y + 7)$$

What is known?

Algebraic expression.

What is unknown?

Division of the algebraic expression.

Reasoning:

Find out factor of $$10y(6y + 21)$$ then cancel out common factors of $$10y(6y + 21)$$ and $$5(2y + 7)$$.

Steps:

Factorising $$10y(6y + 21)$$, We get

\begin{align} & 10y(6y + 21) \\ &= \begin{Bmatrix} 5 \times 2 \times y \times \\ \left( {2 \times 3 \times y + 3 \times 7} \right) \end{Bmatrix} \\&= 5 \times 2 \times y \times 3\left( {2 \times y + 7} \right)\\&= 30y\left( {2y + 7} \right)\end{align}

\begin{align} & 10y(6y + 21) \div 5(2y + 7)\\ \\ &= \frac{{30y(2y + 7)}}{{5(2y+7)}}\\&=6y\end{align}

(iv) $$\;9{x^2}{y^2}(3z - 24) \div 27xy(z - 8)$$

What is known?

Algebraic expression.

What is unknown?

Division of the algebraic expression.

Reasoning:

Find out factor of $$9{x^2}{y^2}(3z - 24)$$ then cancel out common factors of $$9{x^2}{y^2}(3z - 24)$$ and $$27xy(z - 8)$$.

Steps:

Factorising $$9{x^2}{y^2}(3z - 24)$$, We get

\begin{align}&9{x^2}{y^2}(3z - 24) \\ &= \begin{Bmatrix} 3 \times 3 \times x \times x \times y \times y \times \\ \left( {3 \times z - 2 \times 2 \times 2 \times 3} \right) \end{Bmatrix} \\&= \begin{Bmatrix} 3 \times 3 \times x \times x \times y \times y \times 3 \\ \left( {z - 2 \times 2 \times 2} \right) \end{Bmatrix} \\&= 27{x^2}{y^2}\left( {z - 8} \right)\end{align}

\begin{align} & 9{x^2}{y^2}(3z - 24) \div 27xy(z - 8) \\ \\ &= \frac{{27{x^2}{y^2} \times (z - 8)}}{{27xy(z - 8)}}\\&= xy\end{align}

(v) $$\, \begin{Bmatrix} 96abc(3a - 12)(5b - 30) \\ \div 144(a - 4)(b - 6) \end{Bmatrix}$$

What is known?

Algebraic expression.

What is unknown?

Division of the algebraic expression.

Reasoning:

Find out factor of $$96abc(3a - 12)(5b - 30)$$ then cancel out common factors of $$96abc(3a - 12)(5b - 30)$$ and $$144(a - 4)(b - 6)$$.

Steps:

Factorising $$96abc(3a - 12)(5b - 30)$$, We get

\begin{align} & 96abc(3a - 12)(5b - 30) \\ &= \begin{Bmatrix} 96abc \times \left( {3 \times a - 2 \times 2 \times 3} \right) \\\times \left( {5 \times b - 5 \times 2 \times 3} \right) \end{Bmatrix} \\&= \begin{Bmatrix} 96abc \times 3\left( {a - 2 \times 2} \right) \\ \times 5\left( {b - 2 \times 3} \right) \end{Bmatrix} \\&= 1440abc\left( {a - 4} \right)\left( {b - 6} \right)\end{align}

\begin{align} &\begin{Bmatrix} 96abc(3a - 12)(5b - 30) \\ \div 144(a - 4)(b - 6) \end{Bmatrix} \\ \\&={\frac{{1440abc\left( {a - 4} \right)\left( {b - 6} \right)}}{{144(a - 4)(b - 6)}}}\\&= {10abc}\end{align}

Learn from the best math teachers and top your exams

• Live one on one classroom and doubt clearing
• Practice worksheets in and after class for conceptual clarity
• Personalized curriculum to keep up with school