# Ex.8.2 Q3 Introduction to Trigonometry Solution - NCERT Maths Class 10

Go back to  'Ex.8.2'

## Question

If \begin{align} \;\;\tan \,\left( \text{A + B} \right) = \sqrt 3 \end{align} and

\begin{align} & \tan \,\left( \rm{A\,-\,B} \right) = \frac{1}{{\sqrt 3 }};\\ & {0^\circ} < \left( \text{A + B} \right) \le 9{0^\circ},\; \rm{A} > \rm{B}, \end{align}

find $$\text{A}$$ and $$\text{B.}$$

Video Solution
Introduction To Trigonometry
Ex 8.2 | Question 3

## Text Solution

#### Steps:

Given that

\begin{align}{\rm{tan}}\;(\rm{A + B}) &= \sqrt 3 \\{\rm{And,}}\;{\rm{tan}}\,(\rm{A} - \rm{B}) &= \frac{1}{{\sqrt 3 }}\\{\rm{Since}}\;\tan {60^\circ} &= \sqrt 3 \;{\rm{and}} \\ \tan \,{30^\circ} & = \frac{1}{{\sqrt 3 }}\\\text{Therefore,} \\ \therefore {\rm{tan}}\;(\rm{A + B}) &= {\rm{tan}}\;{60^\circ}\\rm{A + B}) &= {60^\circ} \qquad \dots{\rm{(i)}}\\ \therefore {\rm{tan}}\;(\rm{A} - \rm{B}) &= \tan \,{30^\circ}\\(\rm{A} - \rm{B}) &= {30^\circ}\qquad \dots{\rm{(ii)}}\end{align} On adding both equations (i) and (ii), we obtain: \begin{align} \rm{A + B + A} - \rm{B} &= {60^\circ} + {30^\circ}\\2\rm{A} &= {90^\circ}\\ \rm{A} &= {45^\circ}\end{align} By substituting the value of \(A in equation (i) we obtain

\begin{align} \rm{A + B} &= {60^\circ}\\{45^\circ} + \rm{B} &= {60^\circ}\\ \rm{B} &= {60^\circ} - {45^\circ}\\&= {15^\circ}\end{align}

Therefore,

\begin{align}\angle \rm{A} = {45^\circ}\;{\rm{and}}\;\angle \rm{A} = {15^\circ}\;\left( \rm{A > B} \right)\end{align}

Learn from the best math teachers and top your exams

• Live one on one classroom and doubt clearing
• Practice worksheets in and after class for conceptual clarity
• Personalized curriculum to keep up with school