# Ex.11.1 Q4 Mensuration Solutions - NCERT Maths Class 8

## Question

A flooring tile has the shape of a parallelogram whose base is \(24 \rm\,cm\) and the corresponding height is \(10 \rm\,cm.\) How many such tiles are required to cover a floor of area \({\rm{1080}}\,\,{{\rm{m}}^2}\)? (If required you can split the tiles in whatever way you want to fill up the corners).

## Text Solution

**What is Known?**

Shape of the tile and its dimensions.

**What is unknown?**

Number of tiles that are required to cover a floor of area\(=\)\(1080\,\,{{\rm{m}}^2}\)

**Reasoning:**

Shape of the tile is parallelogram and its area can be found easily.

Area of parallelogram \(=\) Base \(\times\) Height

**Steps:**

Area of parallelogram

\[\begin{align} &= \text{base}\times \text{height} \\ &=24\,\text{cm}\times 10\,\text{cm}\\&=240\,\text{c}{{\text{m}}^{2}}\end{align}\]

Hence the area of one tile \( = 240\,{\rm{c}}{{\rm{m}}^2}\)

Area of the floor \( = 1080{{\rm{m}}^2}\,\,\left( {{\rm{given}}} \right)\)

\(\therefore \) Required number of tiles \(\begin{align} = \frac{{{\text{Area of the floor}}}}{{{\text{Area of one tile}}}}\end{align}\)

\[\begin{align}& =\frac{1080\,{{\text{m}}^{2}}}{240\,\,\text{c}{{\text{m}}^{2}}} \\ & =\frac{(1080\!\times \!10000){{\text{cm}}^{2}}}{240\text{c}{{\text{m}}^{2}}}\\&(\because 1\,\text{m }\!\!=\!100\,\text{cm}) \\ & =45000\,\,\,\text{tiles} \\\end{align}\]

Thus,\( 45000\) tiles are required to cover a floor of area \(1080 \rm{m^2}\)