Ex 2.2 Q5 Fractions-and-Decimals-Solutions NCERT Maths Class 7

Go back to  'Ex.2.2'

Question

 Find: -

\(\begin{align}\left( {\rm{a}} \right)\,\,&\frac{1}{2} \text{ of} &\\ &\qquad{\rm{i)}}\;\; 24 \\&\qquad{\rm{ ii) }}\;46\end{align}\)

\(\begin{align}\left( {\text{b}} \right)\,\,&\frac{2}{3}\text{ of }& \\ &\qquad{\rm{i)}}\;\; 18\\&\qquad{\rm{ ii) }} \;27\end{align}\)

\(\begin{align}\left( {\text{c}} \right)\,\,&\frac{3}{4} \text{of } & \\& \qquad {\rm{i)}} \;\;16\\& \qquad {\rm{ ii) }}\;36\end{align}\)

\(\begin{align}\left( {\text{d}} \right)\,\,&\frac{4}{5} \text{ of }& \\&\qquad {\rm{i)}} \;\;20 \\ &\qquad {\rm{ ii) }}\;35\end{align}\)

 Video Solution
Fractions And Decimals
Ex 2.2 | Question 5

Text Solution

What is known?

Fraction and whole.

What is unknown?

Part of following whole according to given fraction.

Reasoning:

Multiple whole by fraction.

Steps:

(a)

 \(\begin{align}{{\rm{ (i) }} \;\frac{1}{2}{\rm{ of }}\;24 = \frac{1}{2} \times \frac{{24}}{1} = \frac{{24}}{2} = 12}\end{align}\)

 \(\begin{align}{\rm{ (ii) }} \; \frac{1}{2}{\rm{ of }}\;46 = \frac{1}{2} \times \frac{{46}}{1} = \frac{{46}}{2} = 23\end{align}\)

(b)

 \(\begin{align}{{\rm{ (i) }} \; \frac{2}{3}{\rm{ of }}\;18 = \frac{2}{3} \times \frac{{18}}{1} = 2 \times 6 = 12}\\\end{align}\)

 \(\begin{align}{\rm{(ii)}} \;\frac{2}{3}{\rm{ of }}\;27 = \frac{2}{3} \times \frac{{27}}{1} = 2 \times 9 = 18\end{align}\)

(c) 

 \(\begin{align}\;\; {\rm{(i)}} \;\frac{3}{4}{\rm{ of }}\;16 = \frac{3}{4} \times \frac{{16}}{1} = 3 \times 4 = 12\end{align}\)

 \(\begin{align}\quad {\rm{(ii)}} \; \frac{3}{4}{\rm{ of }}\;36 = \frac{3}{4} \times \frac{{36}}{1} = 3 \times 9 = 27\end{align}\)

(d) 

 \(\begin{align} \;\; {\rm{(i)}} \; \frac{4}{5}{\rm{ of }}\;20 = \frac{4}{5} \times \frac{{20}}{1} = 4 \times 4 = 16\end{align}\)

 \(\begin{align} \;\; {\rm{(ii)}} \; \frac{4}{5}{\rm{ of }}\;35 = \frac{4}{5} \times \frac{{35}}{1} = 4 \times 7 = 28\end{align}\)

  
Learn from the best math teachers and top your exams

  • Live one on one classroom and doubt clearing
  • Practice worksheets in and after class for conceptual clarity
  • Personalized curriculum to keep up with school