Ex.6.3 Q5 Triangles Solution - NCERT Maths Class 10

Go back to  'Ex.6.3'


\(S\) and \(T\) are points on sides \(PR\) and \(QR\) of  \(\Delta PQR\) such that  \( \angle P{\rm{ }} = \angle RTS\). Show that


Text Solution


If two angles of one triangle are respectively equal to two angles of another triangle, then the two triangles are similar.

This is referred as \(AA\) criterion for two triangles.


In \(\Delta RPQ,\,\,\Delta RTS\)

 \[\begin{align}\angle R P Q&=\angle R T S \quad \text { (given) } \\ \angle P R Q&=\angle T R S \quad  \text { (Commonangle) } \\ \Rightarrow\qquad \Delta R P Q &- \Delta R T S \quad  \because \text { (AA criterion) }\end{align}\]