Ex. 6.6 Q6 Triangles Solution - NCERT Maths Class 10

Go back to  'Ex.6.6'

Question

Prove that the sum of the squares of the diagonals of parallelogram is equal to the sum of the squares of its sides.

 

Text Solution

 

Reasoning:

In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Steps:

In parallelogram \(ABCD \)

\(AB = CD \\ AD = BC\)

 Draw \(A E \perp C D\) , \(D F \perp A B\) 
\(​​​​ EA = DF\) (Perpendiculars drawn between same parallel lines)

In \(\Delta AEC\)

\begin{align}A{C^2} &= A{E^2} + E{C^2}\\ &= A{E^2} + {\left[ {ED + DC} \right]^2}\\ &= A{E^2} + D{E^2} + D{C^2} + 2DE.DC\\A{C^2} &= A{D^2} + D{C^2} + 2DE \cdot DC \ldots  \ldots   \left( i \right)\;\;\left[ {{\rm{Since, }}A{D^2} = A{E^2} + D{E^2}} \right]\end{align}

In \(\Delta \,DFB\)
\[\begin{align} B{D^2} &= D{F^2} + B{F^2}\\ &= D{F^2} + {\left[ {AB - AF} \right]^2}\\ &= D{F^2} + A{B^2} + A{F^2} - 2AB.AF\\ &= A{D^2} + A{B^2} - 2AB.AF\\ B{D^2} &= A{D^2} + A{B^2} - 2AB.AF \ldots  \left( \rm{ii} \right) \end{align}\] (Since \(A{D^2} = D{F^2} + A{F^2}\))

Adding (i) and (ii)

\[\begin{align} A{C^2} + B{D^2} &= A{D^2} + D{C^2} + 2DE \cdot DC + A{D^2} + A{B^2} - 2AB.AF\\ A{C^2} + B{D^2} &= B{C^2} + D{C^2} + A{D^2} + A{B^2} + 2AB.AF - 2AB.F \end{align}\]
 (Since \(AD = BC\) and \(DE = AF, CD = AB\))

 \[ \Rightarrow A{C^2} + B{D^2} = A{B^2} + B{C^2} + C{D^2} + A{D^2}\]

 

  
Learn from the best math teachers and top your exams

  • Live one on one classroom and doubt clearing
  • Practice worksheets in and after class for conceptual clarity
  • Personalized curriculum to keep up with school