# Ex. 6.6 Q6 Triangles Solution - NCERT Maths Class 10

Go back to  'Ex.6.6'

## Question

Prove that the sum of the squares of the diagonals of parallelogram is equal to the sum of the squares of its sides.

Video Solution
Triangles
Ex 6.6 | Question 6

## Text Solution

Reasoning:

In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

#### Steps:

In parallelogram $$ABCD$$

\begin{align} AB = CD \\ AD = BC\end{align}

Draw $$A E \perp C D,$$ $$D F \perp A B$$

\begin{align} ​​​​& \qquad \qquad EA = DF \\& \begin{bmatrix} \text{Perpendiculars drawn between }\\ \text{same parallel lines}\end{bmatrix} \end{align}

In $$\Delta AEC$$

\begin{align}A{C^2} &\! = \! A{E^2} + E{C^2}\\ &\! =\!  A{E^2} + {\left[ {ED + DC} \right]^2}\\ &\! = \! A{E^2} \! \!+\!\! D{E^2} \!\!+\! \! D{C^2} \!+\! 2DE.\! DC \\ A{C^2} &\! = \! A{D^2}\! + \! D{C^2} \! + \! 2DE \cdot \! DC  \; \ \ldots \left(\text{i} \right) \\ & \left[ {{\text{Since, }}A{D^2} \! =\!  A{E^2} + D{E^2}} \right]\end{align}

In $$\Delta \,DFB$$

\begin{align} B{D^2} &\!=\! D{F^2}\! +\! B{F^2}\\ &\!=\! D{F^2}\! +\! {\left[ {AB\! -\! AF} \right]^2}\\ &\!= \! D{F^2} \!\! +\!\! A{B^2} \!\! +\!\! A{F^2}\! \!-\!\! 2AB. \!AF \\ &\!=\! A{D^2} \!+ \!A{B^2}\! - \!2AB.AF\\ B{D^2} &\!= \!A{D^2} \!+\! A{B^2}\! -\! 2AB.AF \; \ldots \left( \rm{ii} \right) \\ &\text{(Since } A{D^2} = D{F^2} + A{F^2}) \end{align}

Adding (i) and (ii)

\begin{align} A{C^2}\!+\!B{D^2} &\!=\! \begin{bmatrix}A{D^2} \!+\! D{C^2} \! +\! 2DE \cdot DC \!+\! \\ A{D^2} \!+\! A{B^2} \! -\! 2AB.AF \end{bmatrix} \\ A{C^2} \!+\! B{D^2} &\!= \!\begin{bmatrix}B{C^2}\! +\! D{C^2} \!+\! A{D^2} \!+\! A{B^2} \!+\!\\ 2AB.AF \!- \!2AB.F\end{bmatrix} \\ \text{(Since } &AD \!=\! BC, \;DE \!=\! AF,\; CD \!=\! AB) \end{align}

\begin{align} \Rightarrow \quad& A{C^2} + B{D^2} \\ = & A{B^2} \!+\! B{C^2} \!+\! C{D^2} \!+ \! A{D^2} \end{align}

Learn from the best math teachers and top your exams

• Live one on one classroom and doubt clearing
• Practice worksheets in and after class for conceptual clarity
• Personalized curriculum to keep up with school