# Simplify (3a^{4} - 2a^{2} + 5a - 10) - (2a^{4} + 4a^{2} + 5a - 2).

**Solution:**

Given, (3a^{4} - 2a^{2} + 5a - 10) - (2a^{4} + 4a^{2} + 5a - 2)

Now, 3a^{4} - 2a^{2} + 5a - 10 - 2a^{4} - 4a^{2} - 5a + 2

Grouping of common terms,

= 3a^{4} -2a^{4} - 2a^{2} - 4a2 + 5a - 5a - 10 + 2

= a^{4} - 6a^{2} - 8

Therefore, (3a^{4} - 2a^{2} + 5a - 10) - (2a^{4} + 4a^{2} + 5a - 2) = a^{4} - 6a^{2} - 8.

**Example: **

Simplify (2a^{4} - a^{2} + a - 11) - (4a^{4} + 4a2 + a - 2).

**Solution:**

Given, (2a^{4} - a^{2} + a - 11) - (4a^{4} + 4a2 + a - 2)

Now, 2a^{4} - a^{2} + a - 11 - 4a^{4} - 4a^{2} - a + 2

Grouping of common terms,

= 2a^{4} - 4a^{4} - a^{2} - 4a^{2} + a - a - 11 + 2

= -2a^{4} - 5a^{2} - 9

Therefore, (2a^{4} - a^{2} + a - 11) - (4a^{4} + 4a^{2} + a - 2) = -2a^{4} - 5a^{2} - 9.

## Simplify (3a^{4} - 2a^{2} + 5a - 10) - (2a^{4} + 4a^{2} + 5a - 2).

**Summary:**

(3a^{4} - 2a^{2} + 5a - 10) - (2a^{4} + 4a^{2} + 5a - 2) is a^{4} - 6a^{2} - 8.

visual curriculum