Parallelograms - Same Base, Same Parallels

Go back to  'Triangles-Quadrilaterals'

Consider two parallelograms ABCD and ABEF, on the same base AB, and between the same parallels, as shown below:

Parallelograms - Same base same parallel

What will be the relation between the areas of these two parallelograms?

Theorem: Parallelograms on the same base and between the same parallels are equal in area.

Proof: Consider the figure presented above. Can you see that \(\Delta BCE\) and \(\Delta ADF\) will be congruent? This is easy to show. We have:

  1.  BC = AD (opposite sides of a parallelogram are equal)

  2.  \(\angle BCE\) = \(\angle ADF\) (corresponding angles)

  3.  \(\angle BEC\) = \(\angle AFD\) (corresponding angles)

By the ASA criterion, the two triangles are congruent, which means that their areas are equal. Now,

area(ABCD) = area(ABED) + area(\(\Delta BCE\))

Similarly,

area(ABEF) = area(ABED) + area(\(\Delta ADF\))

Clearly,

area(ABCD) = area(ABEF)

This completes the proof.

Next, consider a parallelogram ABCD and a rectangle ABEF on the same base and between the same parallels:

Parallelogram and Rectangle - Same base same parallel

Clearly, their areas will be equal. Now, the length and height (width) of the rectangle have been marked as l and w respectively. Therefore,

area(ABCD) = area(ABEF) = l × w

This means that the area of any parallelogram is equal to the product of its base and its height (the height of a parallelogram can be defined as the distance between its base and the opposite parallel).

Now, consider the following figure, which shows a parallelogram ABCD and a triangle ABE on the same base AB and between the same parallels:

Parallelogram and Triangle - Same base same parallel

What will be the relation between the areas of these two figures? Let us complete the parallelogram ABEF, as shown below:

Parallelogram and Triangles - Same base same parallel

Now, we have:

area(\(\Delta ABE\)) = ½ area(ABFE)

= ½ area(ABCD)

Thus, the area of the triangle is exactly half of the area of the parallelogram. Let us define the height of a triangle as the distance between the base and the parallel through the opposite vertex. We can therefore say that the area of the triangle will be:

Area = ½ × base × height

This is shown below:

Area of a triangle

Note that any of the three sides of the triangle can be taken as the base, but then the height will change accordingly.