What is the sum of the geometric series \(\sum_{n=1}^{10}6(2)^{n}\)
Solution:
The sum of the geometric series can be symbolically written as:
\(\sum_{n=1}^{10}6(2)^{n} = 6(2)^{1} + 6(2)^{2} + 6(2)^{3}+ + 6(2)^{10}\)
The above expression can also be written as:
\(\sum_{n=1}^{10}6(2)^{n} = 6[(2)^{1} + (2)^{2} + (2)^{3}+ + (2)^{10}]\)
The series with the brackets on the RHS of the above equation is written below as:
\((2)^{1} + (2)^{2} + (2)^{3}+ + (2)^{10}\)
The above is a geometric progression with a = 2 and r = 2 and n = 10. The sum of a geometric series is given as:
\(S_{n} = \frac{a(r^{n} - 1)}{r - 1}\)
\(S_{10} = \frac{2(2^{10} - 1)}{2 - 1}\)
S_{10} = \(S_{10} = 2(2^{10} - 1)\)
= 2(1024 - 1)
= 2046
Therefore \(\sum_{n=1}^{10}6(2)^{n} = 6(2046)
= 12276
What is the sum of the geometric series \(\sum_{n=1}^{10}6(2)^{n}\)
Summary:
The sum of the geometric series \(\sum_{n=1}^{10}6(2)^{n}\) is 12276
visual curriculum