∫ [sin(x) + x] / [cos(x) + 1] dx = ?
Solution:
We will be solving this by using trigonometric/hyperbolic identities.
Let's solve this step by step.
Simplify the equation:
∫ [sin(x) + x] / [cos(x) + 1] dx = ∫ [sin(x) / {cos(x) + 1} + x / {cos(x) + 1}] dx
= ∫ sin(x) / {cos(x) + 1} dx + ∫ x / {cos(x) + 1} dx
Let us solve first ∫ sin(x) / {cos(x) + 1} dx
Substitute z = {cos(x) + 1}
⇒ dz/dx = -sin(x)
sin(x) dx = -dz
Substitue sinx dx value in ∫ sin(x) / {cos(x) + 1} dx
∫ sin(x) / {cos(x) + 1} dx = - ∫ 1/z dz
= - ln(z)
Substitue z = {cos(x) + 1}; we get,
∫ sin(x) / {cos(x) + 1} dx = - ln{cos(x) + 1}
Now let us solve the second part ∫ x / {cos(x) + 1} dx
Multipy and divide by csc(x):
∫ x / {cos(x) + 1} dx = ∫ x csc(x) / {csc(x) + cot(x)} dx
Let's integrate this by parts: ∫ f g′ = f g − ∫ f′ g
Here f = x and g' = csc(x) / {csc(x) + cot(x)}
⇒ f′ = 1 and g = 1 / {csc(x) + cot(x)}
⇒ ∫ x / {cos(x) + 1} dx = x / {csc(x) + cot(x)} - ∫ 1 / {csc(x) + cot(x)} dx
Now let us solve ∫ 1 / {csc(x) + cot(x)} dx
Substitue csc(x) = 1 / sin(x) and cot(x) = cos(x) / sin(x) above:
∫ 1 / {csc(x) + cot(x)} dx = ∫ -[ -1 / {cos(x) + 1}] sin(x) dx
Substitue u = cos(x),
du/dx = -sin(x)
sin(x) dx = -du
∫ 1 / {csc(x) + cot(x)} dx = ∫ -[ -1 / {cos(x) + 1}] sin(x) dx = ∫ -1 /(u + 1) du
Substitue v = u + 1
dv/du = 1
du = dv
∫ -1 /(u + 1) du = ∫ -1 /v dv = - ln(v) = - ln(u + 1) = - ln[cos(x) + 1]
⇒ ∫ 1 / {csc(x) + cot(x)} dx = - ln[cos(x) + 1]
∫ x / {cos(x) + 1} dx = x / {csc(x) + cot(x)} - ∫ 1 / {csc(x) + cot(x)} dx
Substitue the value of ∫ 1 / {csc(x) + cot(x)} dx in the above equation:
∫ x / {cos(x) + 1} dx = x / {csc(x) + cot(x)} + ln[cos(x) + 1]
Therefore, combining both parts
∫ [sin(x) + x] / [cos(x) + 1] dx = - ln{cos(x) + 1} + x / {csc(x) + cot(x)} + ln[cos(x) + 1] + C
= x / [csc(x) + cot(x)] + C
Hence, ∫ [sin(x) + x] / [cos(x) + 1] dx = x / [csc(x) + cot(x)] + C
∫ [sin(x) + x] / [cos(x) + 1] dx = ?
Summary:
Answer: ∫ [sin(x) + x] / [cos(x) + 1] dx = x / [csc(x) + cot(x)] + C
visual curriculum