In the verge of coronavirus pandemic, we are providing FREE access to our entire Online Curriculum to ensure Learning Doesn't STOP!

Examples on Asymptotes and Rectangular Hyperbolas

Go back to  'Hyperbola'

Example – 26

Find the equation of the hyperbola with asymptotes   \(3x - 4y + 7 = 0\) and  \(4x + 3y + 1 = 0\) and which passes through the origin.

Solution: The joint equation of the asymptotes is

\[(3x - 4y + 7)(4x + 3y + 1) = 0\]

Since the equation of a hyperbola and that of the joint equation of its asymptotes differs by just a constant, the equation of the hyperbola must be

\[(3x - 4y + 7)(4x + 3y + 1) + k = 0\]

We can obtain k by exploiting the fact that this hyperbola passes through the origin (0, 0) ; thus

\[\begin{align} & \qquad\quad(7)(1) + k = 0 \\ &  \Rightarrow \qquad  k = - 7 \end{align} \]

The equation of the hyperbola is

\[\begin{align}  &\qquad\quad (3x - 4y + 7)(4x + 3y + 1) - 7 = 0 \\\\ & \Rightarrow \qquad  12{x^2} - 7xy - 12{y^2} + 31x + 17y = 0 \end{align} \]

Example - 27

A circle cuts the rectangular hyperbola   \(xy = 1\)  in four points  \(({x_i},\,{y_i}),\,i = 1,\;2,\,3,\,4.\) Prove that

\[{x_1}\,{x_2}\,{x_3}\,{x_4} = {y_1}\,{y_2}\,{y_3}\,{y_4} = 1\]

Solution: We assume the equation of the circle to be

\[{x^2} + {y^2} + 2gx + 2fy + c = 0\]

Using \(\begin{align}y = \frac{1}{x}\end{align}\)  in this equation, we have

\[\begin{align}&{x^2} + \frac{1}{{{x^2}}} + 2gx + \frac{{2f}}{x} + c = 0 \\  &{x^4} + 2g{x^3} + c{x^2} + 2fx + 1 = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \ldots \left( 1 \right)  \\ \end{align} \]

This is a biquadratic in x yielding four roots \({x_1},\,{x_2},\,{x_3},\,{x_4}.\)

It is evident from (1) that

\[{x_1}\,{x_2}\,{x_3}\,{x_4} = 1\]

Since \(\begin{align}{y_i} = \frac{1}{{{x_i}}},\end{align}\)  the result   \({y_1}\,{y_2}\,{y_3}\,{y_4} = 1\) follows.

Example - 28

A variable line of slope 4 intersects  \(xy = 1\) in A and B. C divides AB internally in the ratio 1 : 2. Find the locus of C.

Solution: Let A and B have the coordinates  \(\left( {{t_1},\,\begin{align}\frac{1}{{{t_1}}}\end{align}} \right)\) and  \(\left( {{t_2},\,\begin{align}\frac{1}{{{t_2}}}\end{align}}\right).\)

Since AB has slope 4, we have

\[\begin{align}& \frac{{\begin{align}\frac{1}{{{t_1}}} - \frac{1}{{{t_2}}}\end{align}}}{{{t_1} - {t_2}}} = 4 \\  \Rightarrow\quad & {t_1}{t_2} = \frac{{ - 1}}{4}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \ldots \left( 1 \right) \end{align} \]

Assume the coordinates of C to be  \((h,\,k).\)  We thus have

\[\begin{align}&\qquad\quad h = \frac{{2{t_1} + {t_2}}}{3},\,\,\,\,\,k = \frac{\begin{align}{\frac{2}{{{t_1}}} + \frac{1}{{{t_2}}}}\end{align}}{3} \\   &\Rightarrow\quad   2{t_1} + {t_2} = 3h,\,\,\,\,\,2{t_2} + {t_1} = 3k{t_1}{t_2}  \\
  \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, &\qquad\qquad\qquad\qquad\qquad\qquad\;\;\;=  - \frac{{3k}}{4}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {Using{\text{ }}\left( 1 \right)} \right)  \\
   &\Rightarrow\quad   3({t_1} + {t_2}) = 3h - \frac{{3k}}{4},\,\,\,\,\,({t_1} - {t_2}) = 3h + \frac{{3k}}{4}  \\
   &\Rightarrow\quad   {t_1} + {t_2} = h - \frac{k}{4},\,\,\,\,\,{t_1} - {t_2} = 3\left( {h + \frac{k}{4}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \ldots \left( 2 \right)  \\ 
\end{align} \]

Using  \({\left( {\,{t_1} + {t_2}} \right)^2} = {\left( {{t_1} - {t_2}} \right)^2} + 4{t_1}{t_2}\)  and the value of  \({t_1}\,{t_2}\)   from (1), we can eliminate \({t_1}\) and  \({t_2}\) from (2) to obtain a relation in h and k :

\[16{h^2} + 10hk + {k^2} - 2 = 0\]

Thus, the locus of C is

\[16{x^2} + 10xy + {y^2} - 2 = 0\]

Example - 29

On any point P on the hyperbola   \(\begin{align}\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1,\end{align}\) a tangent is drawn intersecting the asymptotes in B and C. Let O be the centre of the hyperbola. Prove that

(a) area  \((\Delta OBC)\) is constant           (b)  \(PB = PC\) 

Solution:

Assume P to be the point   \((a\sec \theta ,\,b\tan \theta ).\)  The equation of the tangent BPC is

\[\frac{x}{a}\sec \theta  - \frac{y}{b}\tan \theta  = 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \ldots \left( 1 \right)\]

The two asymptotes have the equation

\[y =  \pm \frac{b}{a}x\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \ldots \left( 2 \right)\]

The point B and C can therefore be determined by simultaneously solving (1) and (2):

\[B \equiv (a(\sec \theta  + \tan \theta ),\,\,b(\sec \theta  + \tan \theta )),\,\,\,\,\,C \equiv (a(\sec \theta  - \tan \theta ),\,\, - b(\sec \theta  - \tan \theta ))\]

The area of   \(\Delta OBC\)  can be evaluated using the determinant formula :

\[\Delta  = \frac{1}{2}\left| {\begin{array}{*{20}{c}}  {\,\,a(\sec \theta  + \tan \theta )}&{b(\sec \theta  + \tan \theta )}&{1\,\,} \\   {\,a(\sec \theta  - \tan \theta )}&{ - b(\sec \theta  - \tan \theta )}&{1\,\,} \\ 
  0&0&{1\,\,} \end{array}} \right|\]

Expanding along \({R_3},\) we have

\[\begin{align}&\Delta  = \frac{1}{2}\left( {2ab\left( {{{\sec }^2}\theta  - {{\tan }^2}\theta } \right)} \right) \ \\  \,\,\,\,\, &\;\;\;= ab  \\\end{align} \]

which is constant.

That P is the mid-point of BC is straight away evident by simple inspection of the coordinates of B and C.

Example - 30

Four points A, B, C, D lie on a rectangular hyperbola  \(xy = {c^2}\) such that   \(AC \bot BD.\)  Let O be the the centre of the hyperbola. The slopes of  \(OA,\,OB,\,OC\) and OD are  \({m_1},\,{m_2},\,{m_3}\) and  \({m_4}\) respectively. Prove that \({m_1}\,{m_2}\,{m_3}\,{m_4} = 1.\)

Solution:

The coordinates of A, B,C, D can be assumed to be  \(\left( {c{t_i},\,\begin{align}\frac{c}{{{t_i}}}\end{align}} \right),\,i = 1,\,2,\,3,\,4.\) Thus,

\[\begin{align}&\qquad\;\;\; {{m}_{i}}=\frac{\begin{align}\frac{c}{{{t}_{i}}}\end{align}-0}{c{{t}_{i}}-0}=\frac{1}{t_{i}^{2}} \\ &\Rightarrow \quad{{m}_{1}}\,{{m}_{2}}\,{{m}_{3}}\,{{m}_{4}}=\frac{1}{t_{1}^{2}t_{2}^{2}t_{3}^{2}t_{4}^{2}}\qquad\qquad\qquad\qquad\ldots \left( 1 \right) \\ 
\end{align}\]

Since  \(AC\bot BD,\) we have

\[\begin{align} &\qquad \frac{\begin{align}\frac{c}{{{t}_{3}}}-\frac{c}{{{t}_{1}}}\end{align}}{c{{t}_{3}}-c{{t}_{1}}}\times \frac{\begin{align}\frac{c}{{{t}_{2}}}-\frac{c}{{{t}_{4}}}\end{align}}{c{{t}_{2}}-c{{t}_{4}}}=-1 \\ & \Rightarrow\quad {{t}_{1}}\,{{t}_{2}}\,{{t}_{3}}\,{{t}_{4}}=-1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\ldots \left( 2 \right) \end{align}\]

Using (1) and (2), we have

\[{{m}_{1}}\,{{m}_{2}}\,{{m}_{3}}\,{{m}_{4}}=1\]

Download SOLVED Practice Questions of Examples on Asymptotes and Rectangular Hyperbolas for FREE
Hyperbolas
grade 11 | Questions Set 1
Hyperbolas
grade 11 | Answers Set 1
Hyperbolas
grade 11 | Questions Set 2
Hyperbolas
grade 11 | Answers Set 2
Download SOLVED Practice Questions of Examples on Asymptotes and Rectangular Hyperbolas for FREE
Hyperbolas
grade 11 | Questions Set 1
Hyperbolas
grade 11 | Answers Set 1
Hyperbolas
grade 11 | Questions Set 2
Hyperbolas
grade 11 | Answers Set 2
Learn from the best math teachers and top your exams

  • Live one on one classroom and doubt clearing
  • Practice worksheets in and after class for conceptual clarity
  • Personalized curriculum to keep up with school