Determine n if,
(i) ²ⁿC₃ : ⁿC₃ = 12 : 1 (ii) ²ⁿC₃ : ⁿC₃= 11 : 1
Solution:
(i) It is given that ²ⁿC₃/ⁿC₃ = 12/1
Using nCr formula,
(2n)! / [3!(2n - 3)!] × [3!(n - 3)!] / n! = 12
[(2n)(2n-1)(2n-2)(2n-3)!] / [6 (2n-3)!] × [6 (n-3)! / [n(n-1)(n-2)(n-3)!] = 12
[(2)(2n - 1)(2n - 2)] / [(n - 1)(n - 2)] = 12
[4(2n - 1)(n - 1)] / [(n - 1)(n - 2)] = 12
(2n - 1)/(n - 2) = 3
2n - 1 = 3n - 6
-n + 5 = 0
n = 5
(ii) ²ⁿC₃/ⁿC₃ = 11/1
Using nCr formula,
(2n)! / [3!(2n - 3)!] × [3!(n - 3)!] / n! = 11
[(2n)(2n-1)(2n-2)(2n-3)!] / [6 (2n-3)!] × [6 (n-3)! / [n(n-1)(n-2)(n-3)!] = 11
[2(2n - 1)(2n - 2)] / [(n - 1)(n - 2)] = 11
[4(2n - 1)(n - 1)] / [(n - 1)(n - 2)] = 11
[(2n - 1)(n - 1)] / [(n - 1)(n - 2)] = 11/4
(2n - 1)/(n - 2) = 11/4
4(2n - 1) = 11(n - 2)
8n - 4 = 11n - 22
8n - 11n = 4 - 22
-3n = -18
n = 6
NCERT Solutions Class 11 Maths Chapter 7 Exercise 7.4 Question 2
Determine n if, (i) ²ⁿC₃ : ⁿC₃ = 12 : 1 (ii) ²ⁿC₃ : ⁿC₃= 11 : 1
Summary:
(i) If ²ⁿC₃ : ⁿC₃ = 12 : 1, then n = 5 (ii) If ²ⁿC₃ : ⁿC₃ = 11 : 1 then n = 6
visual curriculum