from a handpicked tutor in LIVE 1-to-1 classes
Expand using Binomial Theorem (1 + x/2 - 2/x)⁴, x ≠ 0
Solution:
By using the binomial theorem, the expansion of the given expression is,
[(1 + x/2) - 2/x ]4 = ⁴C₀ (1 + x/2)4 + ⁴C₁ (1 + x/2)3 (-2/x) + ⁴C₂ (1 + x/2)2 (-2/x)2 + ⁴C₃ (1 + x/2) (-2/x)3 + ⁴C₄ (-2/x)4
Using the nCr formula,
[(1 + x/2) - 2/x ]4 = (1 + x/2)4 + 4 (1 + x/2)3 (-2/x) + 6 (1 + x/2)2 (-2/x)2 + 4 (1 + x/2) (-2/x)3 + (-2/x)4 ... (1)
Now, we will expand (1 + x/2)4 again using the binomial theorem. Then,
- (1 + x/2)4 = ⁴C₀ (1)4 + ⁴C₁ (1)3 (x/2) + ⁴C₂ (1)2 (x/2)2 + ⁴C₃ (1) (x/2)3 + ⁴C₄ (x/2)4
= 1 + 4 (x/2) + 6 (x2/4) + 4 (x3/8) + (x4/16)
= 1+ 2x + 3x2/2 + x3/2 + x4/16
- (1 + x/2)3 = 13 + 3(1)2 (x/2) + 3 (1) (x/2)2 + (x/2)3 (Using (a+b)³ formula)
= 1 + 3x/2 + 3x2/4 + x3/8
- (1+ x/2)2 = 12 + 2 (1)(x/2) + (x/2)2 (Using (a+b)² formula)
= 1 + x + x2/4
Substitute each of these in (1),
[(1 + x/2) - 2/x ]4
= [1+ 2x + 3x2/2 + x3/2 + x4/16] + 4 [1 + 3x/2 + 3x2/4 + x3/8] (-2/x)
+ 6 [1 + x + x2/4] (4/x2) + 4 (1 + x/2) (-8/x3) + 16/x4
= [1+ 2x + 3x2/2 + x3/2 + x4/16] + [-8/x - 12 - 6x - x2]
+ [24/x2 + 24/x + 6] + [-16/x2 - 32/x3] + 16/x4
= 16/x + 8/x2 - 32/x3 + 16/x4 - 4x + x2/2 + x3/2 + x4/16 - 5
NCERT Solutions Class 11 Maths Chapter 8 Exercise ME Question 9
Expand using Binomial Theorem (1 + x/2 - 2/x)⁴, x ≠ 0
Summary:
We expanded and found the value of (1 + x/2 - 2/x)⁴ to be 16/x + 8/x2 - 32/x3 + 16/x4 - 4x + x2/2 + x3/2 + x4/16 - 5
visual curriculum