Find the sum of the following series up to n terms:
(i) 5 + 55 + 555 + .... (ii) .6 +.66 +.666 + ....
Solution:
(i) 5 + 55 + 555 + ....
Let Sₙ = 5 + 55 + 555 + .... n terms
Sₙ = 5/9 [9 + 99 + 999 + .... n terms]
= 5/9 [(10 - 1) + (102 - 1) + (103 - 1) .... n terms]
= 5/9 [(10 + 102 + 103 + .... n terms) - n]
Now using the sum of n terms of GP,
= 5/9 [10 (10n - 1)/(10 - 1) - n]
= 5/9 [10 (10n - 1)/9 - n]
= 50/81 (10n - 1) - 5n/9
(ii) .6 +.66 +.666 + ....
Let Sₙ = 5.6 +.66 +.666 + .... n terms
Sₙ = 6 [.6 +.66 +.666 + .... n terms]
= 6/9 [0.9 + 0.99 + 0.999 + .... n terms]
= 6/9 [(1 - 1/10) + (1 - 1/102) + (1 - 1/103) + .... n terms]
= 2/3 [(1 + 1 + 1 + .... n terms) - 1/10 (1 + 1/10 + 1/102 + .... n terms]
Now using the sum of n terms of GP,
= 2/3 {n - 1/10 [(1 - (1/10)n/(1 - 1/10)]}
= 2n/3 - 2/30 x 10/9 (1 - 10-n)
= 2n/3 - 2/27 (1 - 10-n)
NCERT Solutions Class 11 Maths Chapter 9 Exercise ME Question 21
Find the sum of the following series up to n terms: (i) 5 + 55 + 555 + .... (ii) .6 +.66 +.666 + ....
Summary:
The sum of the first two series up to n terms are i) 50/81 (10n - 1) - 5n/9 and ii) 2n/3 - 2/27 (1 - 10-n)
visual curriculum