Find the sum to n terms of the series 1 x 2 x 3 + 2 x 3 x 4 + 3 x 4 x 5 + 4 x 5 + ....
Solution:
The given series is 1 x 2 x 3 + 2 x 3 x 4 + 3 x 4 x 5 + 4 x 5 + .... n terms.
Hence,
an = n (n + 1)(n + 2)
= (n2 + n)(n + 2)
= n3 + 3n2 + 2n
Therefore,
Sn = ∑nk = i(a)k
= ∑nk = 1(k3 + 3k2 + 2k)
= ∑nk = 1k 3 + 3∑nk = 1(k)2 + 2∑nk = 1k
= [n (n + 1)/2]2 + [3n (n + 1)(2n + 1)]/2 + 2n (n + 1)/2
= [n (n + 1)/2]2 + [n (n + 1)(2n + 1)/2] + (n + 1)/2
Sn = n (n + 1)/2 [n (n + 1)/2 + 2n + 1 + 2]
= n (n + 1)/2 [(n2 + n + 4n + 6)/2]
= n (n + 1)/4 [n2 + 5n + 6]
= n (n + 1)/4 [n2 + 2n + 3n + 6]
= n (n + 1) [n (n + 2) + 3(n + 2)]/4
= n/4 (n + 1)(n + 2)(n + 3)
NCERT Solutions Class 11 Maths Chapter 9 Exercise 9.4 Question 2
Find the sum to n terms of the series 1 x 2 x 3 + 2 x 3 x 4 + 3 x 4 x 5 + 4 x 5 + ....
Summary:
The given series is 1 x 2 x 3 + 2 x 3 x 4 + 3 x 4 x 5 + 4 x 5 + .... up to n terms was found out to be n/4 (n + 1)(n + 2)(n + 3) using an = n (n + 1)(n + 2)
visual curriculum